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Abstract. Key-value stores are the backbone of many modern SQL-
and NoSQL-based data systems, serving a variety of real-world applica-
tions. Despite their widespread adoption, existing key-value benchmarks
fall short across multiple dimensions when accurately replicating com-
plex and dynamic real-world workloads. For instance, state-of-the-art
key-value benchmarks, such as YCSB, KVBench, and db_bench, are un-
able to (i) emulate dynamic workloads where the workload composition
and distribution changes arbitrarily over time; (ii) generate composite
keys with different prefix distributions; and (iii) generate workloads with
varied degrees of data sortedness. These limitations result in inaccurate
performance evaluations and limit the ability to understand how a com-
mercial key-value store performs under dynamically shifting workloads.

In this paper, we introduce Tectonic, a highly configurable and
resource-efficient Rust-based key-value workload generator designed to
model the temporal, structural, and dynamic properties of real-world
workloads. Tectonic offers (i) fine-grained control over data access pat-
terns for inserts, updates, merges, point and range queries, and point and
range deletes; (ii) configurable composite key generation/selection strate-
gies; (iii) dynamic workload generation where the workload properties
change over time; and (iv) generation of workloads with user-specified
data sortedness. Tectonic does so (v) at a 2× higher throughput than
the state-of-the-art, (vi) while recording up to 84% lower main memory
footprint. By bridging the gap between synthetic and production work-
loads, Tectonic enables in-depth analysis of key-value data systems under
conditions that better reflect the demands of real-world applications. We
benchmark Tectonic’s performance against YCSB and KVBench in terms
of latency, resource utilization, and ability to emulate production work-
loads. The code for Tectonic is available at: https://github.com/SSD-
Brandeis/tectonic.
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1 Introduction

Key-value stores are widely used as the storage engine of a wide number of
NoSQL data stores, including RocksDB [16] at Meta, Bigtable [8] and Lev-
elDB [20] at Google, FoundationDB [4] at Apple, Cassandra [2] and HBase [3]
⋆ Both authors contributed equally and are corresponding authors for this work.
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at Apache, Azure CosmosDB [30] and FASTER [7] at Microsoft, and Dy-
namoDB [13] at Amazon. Many relational databases also employ key-value stores
underneath in the storage layer. For example, CockroachDB [11] uses Pebble as
the storage engine, and TiDB [21] and MyRocks [14] both use RocksDB as the
underlying storage. While the key-value paradigm allows for low-latency writes
and high operational throughput in general, the performance of a key-value store
can vary significantly based on the workload characteristics, such as the propor-
tion of different operations, the distribution of keys, and the data access patterns,
as well as the variability of the workload over time [6,9,24,28,41]. Thus, there is
a strong need for effective benchmarking tools that can (i) generate workloads
that closely resemble production workloads and (ii) evaluate the performance of
key-value stores under diverse and dynamic workloads.
Limitations of the State of the Art. State-of-the-art key-value benchmarks,
such as YCSB [12], KVBench [47], and db_bench [15], are widely used to eval-
uate the performance of key-value stores. However, these workload generators
are unable to capture the complexity of real-world workloads across
multiple dimensions, as shown in Table 1.
(1) Inability to Generate Dynamic Workloads: In practice, production workloads
often exhibit temporal variations, such as diurnal shifts, seasonal trends, and
gradual transitions in access patterns [6,23,47]. For instance, over a 7-day win-
dow production workloads at Meta, such as UDB, ZippyDB, and UP2X, vary
across multiple dimensions, including (i) the composition of the workload, (ii) the
distribution of the operations, (iii) access patterns of queries, as well as (iv) the
sizes of key-value pairs [6]. UDB shows a diurnal pattern for writes to the
database, which peaks each day at 17:00 PST, and then quickly reaches its
nadir at 23:00 PST. Moreover, during the weekends, some column families ex-
perience a significant (by up to 10×) jump in the query frequency. One of the
biggest limitations of state-of-the-art key-value benchmarks is their inability
to capture dynamic variations in the workload altogether and model
shifting workloads. In fact, the only way to emulate temporal variation in
workloads is by generating segments of the dynamic workload separately and
then stitching them together manually. This is a very crude emulation of dy-
namic workloads, as each phase operates on a disjoint keyspace, thus failing to
preserve key-sharing across phases. As a result, the workloads generated lack
coherence, which in turn, undermines the accuracy of performance evaluation.
(2) No Support for Composite Keys and Prefix-based Access Patterns: In pro-
duction workloads, often the database name, the relation/column family name,
as well as the user ID are added as a prefix to the actual application-generated
key to constitute a synthetic composite key. Prefixes to this composite key are
used as identifiers for a key-value pair’s origin and domain, enabling efficient fil-
tering and grouping. For instance, a composite key cf-EMP:edge:alex indicates
the key alex was generated by an application edge and is stored in the col-
umn family EMP [37]. Existing key-value benchmarks are unable to model prefix-
based key layouts altogether. Generating composite key in YCSB, db_bench, or
KVBench would entail significant manual development, which is both complex
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Table 1: Tectonic supports a wide range of operations, distributions, and struc-
tural controls, enabling accurate modeling of real-life workloads.

YCSB | KVBench | db_bench | Tectonic
op

er
at
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n
s

insert ✓ ✓ ✓ ✓

update ✓ ✓ ✓ ✓

read-modify-write ✓ ✓ ✓

point query ✓ ✓ ✓ ✓

empty point query ✓ ✓ ✓

range query ✓ ✓ ✓ ✓

point delete ✓ ✓ ✓

empty point delete ✓ ✓

range delete ✓ ✓ ✓
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uniform ✓ ✓ ✓ ✓

normal ✓ ✓ ✓

beta ✓ ✓

zipfian ✓ ✓ ✓

exponential ✓ ✓

log normal ✓

poisson ✓

weibull ✓

pareto ✓ ✓

p
ro

p
er

ti
es

dynamic workload shifts * * ✓

context-aware shifting ✓

data sortedness ✓

variable query selectivity ✓ ✓ ✓

variable key-value length ✓

temporality-based access ✓ ✓

customizable key prefix * ✓

composite keys ✓

and time-consuming. This makes it very hard to evaluate the performance of key-
value stores that use prefix-based operations, such as indexing [19], membership
checks [38], and data layout reorganization [26].
(3) Lack of Sortedness Benchmarks: Production workloads often exhibit a corre-
lation between attributes, such that when the entries are sorted on one attribute,
they are also nearly sorted on another [35,36]. For instance, in TPC-H [45], the
lineitem table has three date columns, namely, shipdate, commitdate, and
receiptdate, and sorting the data on shipdate would cause the data to be
very close to being sorted on commitdate and receiptdate as well (but not
fully-sorted) [5]. Sortedness of data affects the ingestion, indexing, and query
cost significantly; thus, benchmarking the performance of a storage engine un-
der varied data sortedness is crucial in practice. While existing key-value bench-
marks can generate data following a number of key distributions [15,47], they
are unable to generate data with variable sortedness. The only avail-
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able sortedness benchmark, Benchmark on Data Sortedness (BoDS) [34], has
two major limitations. First, it is not designed as a general-purpose key-value
workload generator, as it does not support basic operations, such as deletes and
updates, cannot generate interleaved operations, and does not support different
key distributions beyond sortedness. Second, BoDS supports only numeric key
generation, and the keys are always generated serially (and not randomly).
(4) Lack of a Unified Benchmarking Framework: Modern application require-
ments are heterogeneous, exhibiting diverse and dynamic data access pat-
terns [6,29,33]. It is critical for a database practitioner to benchmark the per-
formance of different key-value stores under diverse and shifting workloads to
ascertain the suitability of a database for a given workload and performance tar-
get. Existing key-value benchmarks, however, fall short in emulating the rich
space of key-value workloads along one or more dimensions. For instance,
YCSB only supports a small set of distributions (i.e, uniform and Zipfian) and
can not generate workloads with point or range deletes [12,47]. db_bench is
tightly coupled with RocksDB and LevelDB only and, hence, has a limited ap-
plicability [15]. KVBench does not support read-modify-write operations and
has a remarkably high memory footprint (we discuss this in Section 3).
Due to these limitations, state-of-the-art key-value benchmarks are unable to
accurately replicate real-world workloads, leading to poor benchmark-
ing and suboptimal data system optimizations.
Contributions. In this paper, we present Tectonic, a Rust-based, scalable, and
highly configurable key-value benchmarking suite that can generate a diverse
array of dynamic workloads while being faster and more resource-efficient than
the state of the art. The contributions of Tectonic are as follows.

1. Dynamic and Evolving Workloads: Tectonic exposes a rich set of tunable
knobs, providing the users fine-grained control over the workload generation
process. Tectonic allows the user to model dynamically shifting workloads by
specifying the workload characteristics for each phase. Each phase is inde-
pendently configurable, allowing the keyspace to be either disjoint or shared
according to the application requirements.

2. Structured Key Generation: Tectonic allows configurable composite key gen-
eration, allowing the users to have control over the size and domain of each
key segment. Each key segment may have distinct distributions, which allows
modeling the “hotness” of key range, as observed in production workloads.

3. Sortedness-Aware Ingestion: Tectonic supports generating entries with varied
degrees of sortedness. Unlike the state of the art [34], entries in Tectonic can
be generated as interleaved with other database operations and following any
key distribution, while following a user-specified sortedness.

4. Fast and Resource Efficient : We show through experiments that the Rust-
based implementation of Tectonic makes it significantly faster than state-of-
the-art workload generators, such as YCSB and KVBench, while recording
an, on average, 7.5× lower memory footprint.
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2 The Tectonic Benchmark Suite

Tectonic is a highly configurable and resource-aware key-value benchmark that
supports a diverse set of operations, distributions, and properties (see Table 1) to
ensure accurate emulation of real-world workloads. Tectonic’s Rust-based code-
base allows for orders of magnitude faster workload generation (by up to 12×)
with a significantly smaller main memory footprint (by up to 84%) and com-
parable CPU utilization. To the best of our knowledge, Tectonic is the first
key-value benchmark that supports benchmarking storage engines un-
der dynamically shifting workloads.

2.1 Architecture and Overview of Tectonic

Execution Pipeline. Benchmarking in Tectonic happens over a five-step pro-
cess as shown in Fig. 1.

Step 1 : Tectonic takes as input a JSON file, which contains the specification
of the benchmarking workload. At the top level of the specification, we have a
list of one or more Sections. A Section is defined as an ensemble of Groups of
operations. Each Group, in turn, is a collection of an arbitrary number of insert,
update, empty and non-empty point query, range query, read-modify-write, and
point and range delete operations. In the resulting workload, the operations in
different Sections and Groups within a Section are executed serially. Operations
within the same Group are interleaved.

Step 2 : Tectonic parses the JSON input and converts it to a structure hold-
ing Sections, the containing Groups, and the distribution details necessary to
generate the workload. At this stage, Tectonic identifies the different phases in
the benchmarking setup by analyzing the Sections and Groups. Operations in the
same Group are (i) to be executed as interleaved, (ii) share the same keyspace,
and (iii) are affected by preceding operations within the same group. For every
Section in the workload, the generator in Tectonic performs the following steps.

Step 3 : The generator chooses the appropriate data structure to create an
ActiveKeySet that stores the set of “live” keys at any point during workload
generation. The ActiveKeySet is a critical component of the generator as it allows
for (i) differentiating between unique inserts and updates, (ii) differentiating
between empty and non-empty operations (such as point queries and deletes),
(iii) supporting a large number of access distributions, and (iv) generating data
with varied degrees of sortedness. Based on the specification of the operations in a
Section, Tectonic chooses the appropriate data structure (vector, hash set, hash-
map, B+-tree, etc.) to implement the ActiveKeySet. Each Section operates on
an independent ActiveKeySet, allowing for Sections to be generated in parallel.

Steps 4 & 5 : Next, Tectonic performs the generation (from unique inserts)
and selection (which key to query) phases and passes the output to the writer for
execution (or persistent storage). For inserts, updates, and read-modify-writes,
the values associated with the keys are generated on the fly.
Key Construction. Tectonic constructs keys based on the specification in the
input file. A NumberExpr (NumExp) defines a numeric expression that evaluates
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{
 “op”_count:1e7,
 "key":{
  "weighted":[{
   "weight":0.1,
   "value":{
    "segmented":{
      "separator":":",
      "segments":[
       "obj",
       {"uniform":{"len":20}},
       "key",
       {"hot_range":{"len":2,
         "op_count”:40,
         "probability":0.6 } }
  ]}}},{
   "weight":0.9,
   "value":{
    "segmented":{
     "separator":":",
     "segments":[
      "obj",
      {"uniform":{"len":20 } }
  ]}}}
  ]},
 "val":{"uniform":{"len":1024}}
}
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Fig. 1: The components of Tectonic and a flow for generating workloads.

to a numeric key. A StringExp (StrExp), similar to NumExp, is an expression
that evaluates to the desired string key. StrExp has five variants: (i) constant,
evaluates to a constant string, (ii) uniform, produces a string of a specific length
composed of uniform characters (defaulting to alphanumeric), (iii) weighted,
randomly selects from an array of StrExp according to configured probability
weights, (iv) segmented, evaluates different segments independently based on
a configured distribution and joins them together using a delimiter to form a
complete key, and (v) hot-range, generates certain prefixes more frequently.

The NumExp is used by both key generation and key selection. During key
generation, it controls the parameters such as the lengths of the keys and values,
as well as the selection of hot key ranges. The selection process selects keys from
the existing ActiveKeySet for operations such as updates, read-modify-write,
point queries, range queries, point deletes, and range deletes. Keys are selected
by sampling by a specified distribution (defaults to uniform [0.0, 1.0)), clamping
the value to [0.0, 1.0), and multiplying the total count of keys to calculate the
index, which is used to retrieve the key from the ActiveKeySet.

2.2 Basic Key-Value Operations

We now describe the implementation of core key-value operations in Tectonic.
Insert in Tectonic adds a key-value pair with a unique key to the database.
Tectonic maintains the ActiveKeySet (KS) to store and track all “live” or active
keys of a workload at any point in time. The value for a key is generated on the fly
by the writer when a record is written to the output file. Users can configure the
insert workload by defining a "inserts" block with StrExp for "key" and "val"
within "groups" as: {"groups":[{"inserts":{"op_count":NumExp, "key":StrExp,
"val":StrExp}}]}.
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Updates and Read-Modify-Writes. Updates overwrite the value of an
existing key-value pair in the database, while read-modify-writes (also known
as merge) append a new value to the existing one or run a user-defined function
to merge the values [12,16]. In both cases, the key must already exist in the
database and not be logically invalidated. When generating an update or a
read-modify-write, Tectonic selects a key from the ActiveKeySet, KS, after
sampling based on the user-specified distribution (Dist) in "selection". The
default distribution is: Uniform(0, 1). It then generates a value to be updated
or merged while writing keys to the workload file, similarly to inserts. Users must
pass an "updates" and "merges" key to generate update and merge operations,
respectively, as: {"groups":[{"updates":{"op_count":NumExp,"val":StrExp,
"selection":Dist}}]}.

Point Query. Tectonic can generate point queries (PQs) that are (i) empty,
i.e., when the target key does not exist in the database or has been log-
ically invalidated, or (ii) non-empty, i.e., when the target key is live. To
differentiate between empty and non-empty PQ, Tectonic uses the meta-
data in KS. To generate an empty PQ, the generator first randomly gen-
erates a key k, and then checks if k ∈ KS. If it is, Tectonic re-generate
a key at random; otherwise, it adds a PQ on k to the output. For non-
empty PQs, Tectonic selects a key from the KS after sampling it on the
distribution provided in the input file. Users must specify "point_queries"
or "empty_point_queries" key to generate the corresponding operations
as: {"groups":[{"point_queries":{"op_count":NumExp,"selection":Dist} and
{"empty_point_queries":{"op_count":NumExp,"key":StrExp}]}.

Range Query. To generate range queries (RQs), Tectonic first probes KS
and selects a start key by sampling based on a specified distribution. Then,
the end key is determined based on the query selectivity. The RQ selectiv-
ity in Tectonic can be specified as constant or to follow a user-specified dis-
tribution. To generate RQs, the input JSON should have "range_queries" as:
{"groups":[{"range_queries":{"op_count":NumExp,"selectivity":NumExp,
"selection":Dist}]}.

Point Delete. Tectonic can distinguish between empty and non-
empty point deletes [39,40]. Similarly to PQs, to distinguish be-
tween empty and non-empty PDs, Tectonic probes KS for member-
ship checks. For non-empty PDs, Tectonic selects a key from KS,
and once the delete is generated, the key is removed from KS. Users
can generate "point_deletes" or "empty_point_deletes", by specifying:
{"groups":[{"point_deletes":{"amoun"t:NumExp},{"empty_point_deletes":{
"op_count":NumExp,"key":StrExp}]}.

Range Delete. Similar to RQs, Tectonic can generate range deletes with a
given selectivity. After generating the RQ, Tectonic removes all keys within
the deleted range from KS. User can generate "range_deletes", as follows:
{"groups":[{"range_deletes":{"op_count":NumExp,"selectivity":NumExp}}]}.
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2.3 Modeling Workload Skews

Tectonic supports nine distributions for key generation and selection: (1) uniform,
(2) normal, (3) beta, (4) Zipfian, (5) exponential, (6) log-normal, (7) Poisson,
(8) Weibull, and (9) Pareto. It leverages the rand_distr Rust library, which
readily provides the implementations of the distributions, enabling fast sampling.
Tectonic uses these distributions to sample keys from the ActiveKeySet and
clamp them to the interval [0.0, 1.0), to ensure validity.

Each operation in Tectonic, such as inserts, updates, point queries, or range
deletes, can have its own independent key distribution. This allows modeling
diverse access patterns across operations, such as uniformly distributed inserts
followed by a workload of skewed updates, or range queries with a uniform selec-
tivity interleaved with non-empty point queries on the recently inserted entries.

2.4 What Sets Tectonic Apart

Ability of Generating Dynamic Workloads. Production workloads are of-
ten non-uniform and evolve over time due to changes in user behavior, applica-
tion requirements, or specific periodic events. Tectonic is designed to support the
generation of dynamically shifting workloads as it allows the user to separately
specify the composition of multiple workload phases (through Groups and Sec-
tions in the JSON file). Each phase has its own access distribution, operation
mix, and key selection policy. Below, we present two real-world workloads that
state-of-the-art key-value benchmarks are unable to produce, and we discuss how
Tectonic is able to emulate them.

1 {
2 "groups":[{
3 "inserts":{
4 "op_count":1e6,
5 "key":{"uniform":{"len":32}},
6 "val":{"uniform":{"len":1024}}
7 },
8 "updates":{
9 "op_count":1e4,

10 "val":{"uniform":{"len":1024}}
11 }
12 },

13 {
14 "point_queries":{
15 "op_count":1e3,
16 "selection":{"uniform":{"len":32}}
17 },
18 "range_queries":{
19 "op_count":50,
20 "selectivity":{
21 "uniform":{"min":0.01,"max":0.1}},
22 "selection":{"uniform":{"len":32}}
23 }
24 }]}

Fig. 2: Dynamic workload specification in Tectonic: Phase 1: (Lines 1-12) for a
write-heavy workload; Phase 2: (Lines 13-24) for a read-heavy workload.

Example 1: Production workloads at Meta and X experience a burst of inserts
and updates during peak hours (i.e., during sports matches, political debates,
etc.) [10], when user activity soars high [6]. The workload pattern during these
hours is distinctively different from other times of a day, when users are pri-
marily browsing content, leading to a high volume of point and range queries on
popular or recently updated content. Note that the point and range queries in
the later phase must share the keyspace with the preceding inserts and updates.
To simulate this workload scenario, Tectonic requires two groups in a section,
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one which can simulate bursty inserts and updates (Fig. 2(Lines 1-12)) where
key size is 32B and value is of 1024B, two which can simulate high volume of
point and range queries (Fig. 2(Lines 13-24)) where both point queries and range
queries follows a uniform distribution.

Example 2: E-commerce platforms, such as Amazon, often process workloads
where different phases focus on separate segments of the keyspace. For instance,
during off-peak hours, a bulk of the operations target the product catalog, such as
filtering products by vendors. This leads to skewed accesses to data with a specific
key-prefix, such as product:<vendor_id>:<sku>. On the other hand, during peak
hours when customers are active, operations such as checking a user’s order
history lead to frequent accesses that use a completely different set of keys with
a prefix, like order_history:<user_id>:<timestamp>. Since the keys across these
phases are from disjoint parts of the keyspace, Tectonic models this workload by
implementing each phase in a separate Section, thereby enabling distinct prefix
layouts, key distributions, and operation interleaving for each phase.

Tunable Sortedness for Keys. Tectonic can generate workloads with varied
degrees of sortedness. In several production workloads, data arrives in nearly
sorted order [36,45], but not as fully sorted. Tectonic, like BoDS, uses the K,L-
sortedness metric to generate a collection of data that is arbitrarily sorted. K
denotes the fraction of entries that are out of place in the workload, and L denotes
the maximum displacement of such an out-of-place entry. However, unlike BoDS,
Tectonic (i) can support string keys as well as composite keys, (ii) generates the
data following a specific distribution, and (iii) allows other database operations
to be interleaved with the inserts.

Emulating “Hot” Key-ranges. Similarly to UDB, ZippyDB, and UP2X, many
production workloads exhibit strong skew in access patterns, where a small sub-
set of “hot” keys are accessed far more frequently [6,22]. These hot regions may
shift over time depending on application behavior. For instance, during flash
sales on e-commerce platforms, only a few products receive the majority of user
queries and orders. These product IDs form hot key ranges that dominate the
workload for a short window. Tectonic supports fine-grained control over key se-
lection by allowing users to define hot key ranges and assign access probabilities
to them. The range for hot key ranges is defined using non-uniformly generated
prefixes. The length of the prefix, the number of hot prefixes, and the probability
of selecting a hot prefix over a non-hot one during string generation are specified.

Support for Prefix-based and Composite Key. Key-value stores often
rely on structured keys to encode metadata, such as relation names or user
types, for more efficient data partitioning and access. Thus, commercial key-value
stores frequently use prefix-based or composite keys, e.g., user:12345:profile
or org:abc:project:xyz:log, to colocate related records and enable fast pre-
fix scans. Tectonic support prefix-based and composite key generation, allowing
users to configure multiple segments with different distributions, or hot ranges.
When describing the composition of a key, users can specify (i) the key length,
(ii) how to construct each key segment, and (ii) the distribution of each segment.
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3 Benchmark Workloads

Tectonic uses a JSON specification file as input to generate synthetic workloads
that closely resemble real-life production workload characteristics. This input file
is human-readable and is easy to configure. In this section, we show Tectonic can
not only efficiently generate the benchmark workloads of YCSB and KVBench,
but also generate a large set of workloads that the state of the art is unable to
generate. We then compare Tectonic’s performance against the state of the art
in terms of end-to-end latency, throughput, and memory footprint.
Defining Workloads. Workloads in Tectonic are described by a JSON file.
The top-level structure contains Sections, a list of isolated phases in the work-
load, where operations in different sections do not share keyspace. The second
level contains Groups, a list of sequential phases, where operations are aware
of the previous phase (e.g., preloading followed by querying phase on the same
keyspace). Each group specifies one or more operations that are interleaved.
The most common one is op_count, which refers to the number of operations
to generate for a specific operation type. The key/val specifies the process for
generating keys and values, e.g., uniformly random, segmented with a hot pre-
fix, or composite keys. A workload can have multiple sections, with each section
comprising various groups, and each group can have multiple types of operations.
Experimental Setup. We use a machine with an Intel(R) Xeon(R) Gold
6240R CPU, 2.40GHz cores, 192GB of RAM, 240GB SSD, and running
Ubuntu 20.04 LTS. We use the GNU time utility (version 1.7) [17] to collect all
system-level performance metrics such as user time, system time, and maximum
resident set size. We simulate YCSB and KVBench workloads through Tectonic
and compare the total execution time, CPU usage, and memory footprint.

3.1 Emulating YCSB Workloads

The YCSB key-value benchmark is widely used to evaluate the performance
of key-value and NoSQL systems. It has six benchmark workloads (YCSB-A
- YCSB-F), each representing a specific access pattern and read-write ratio.
Tectonic can natively simulate all YCSB workloads using a simple JSON spec-
ification. To run a specific YCSB workload using Tectonic, the user provides
a corresponding specification file (e.g., a.spec.json for YCSB-A) and executes:
tectonic-cli generate -w ycsb-specs/a.spec.json. Each specification file en-
codes the YCSB workload logic using sections, groups, and operations, while
maintaining consistency with the original YCSB design in terms of data model
and access patterns. We include full specifications for all six YCSB workloads
as part of the Tectonic repository under ycsb-specs/, making it easy to modify,
extend, or compose them with additional workload phases.

3.2 Emulating KVBench Workloads

KVBench is a recent key-value benchmarking suite designed to capture a range of
data access patterns observed in production systems [47]. It defines five distinct
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workload profiles (KVBench-I – KVBench-V), each representing a unique com-
bination of operations, key distributions, and data sizes. Tectonic can reproduce
these workloads using declarative JSON specifications, enabling users to experi-
ment with the same access behaviors under a unified and extensible framework.
To run a specific workload using Tectonic, users can provide the corresponding
configuration file, e.g., 1.spec.json for KVBench-I: tectonic-cli generate -w
kvbench-specs/i.spec.json

3.3 The Tectonic Benchmark

We define seven benchmark workloads to show Tectonic’s flexibility in simulating
complex key-value access patterns, as shown in Table 2.

Tec-1 (Multi-phased dynamic) models three sequential workload phases,
transitioning from a write-heavy phase to a read-heavy one and ending with
a balanced mix of operations, including range queries and updates, each follow-
ing a different access distribution.

Tec-2 (Interleaved multi-distributional) generates a workload with inter-
leaved operations, including insert, point, and range queries, point and range
deletes, and empty point queries. Each operation uses its distinct statistical dis-
tribution, ideas for stress-testing systems under mixed and concurrent loads.

Tec-3 (Near-sorted ingestion) simulates scenarios where data arrives mostly
in order, such as time-series databases, but includes controlled disorder in key
insertion order to evaluate tolerance to near-sortedness.

Tec-4 (Soft phase transitioning) captures a gradual transition of the work-
load characteristic over time, such as reducing insert rates and increasing both
point and range query volume across phases.

Tec-5 (Discrete phase transitioning) represents a sharp transition from write-
heavy to read-heavy behavior across two phases, helpful in evaluating system
responsiveness under sudden access pattern changes.

Tec-6 (Variable key-value size) explores workloads with varying key and
value sizes—ranging from 32B to 256B to simulate document stores or blob
systems where entry size variability influences I/O and memory usage.

Tec-7 (Skewed access) focuses on skewed data access, where a small portion
of keys dominate both inserts and point queries, a typical pattern in caching
workloads and real-time analytics.
Together, these workloads highlight Tectonic’s ability to capture complex tem-
poral, structural, and statistical variations in realistic system benchmarks.

4 Experimental Evaluation

In this section, we first evaluate the performance of Tectonic against YCSB and
KVBench across the six YCSB workloads (YCSB-A - YCSB-F). We use three
system-level metrics: (i) end-to-end workload generation latency, (ii) operational
throughput, and (iii) the peak main memory footprint, measured by the maxi-
mum resident set size. Next, we evaluate Tectonic’s against KVBench using the
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Table 2: Benchmark workloads supported by Tectonic
workload composition distribution of operations

Tec-1: Multi-phased dynamic
p1: 95% insert, 5% non-empty point deletes;
p2: 100% empty point query;
p3: 50% insert, 50% range query (sel: 0.01)

p1: Zipfian (both ops.);
p2: uniform;
p3: uniform (both ops.)

Tec-2: Interleaved multi-distributional
50% insert, 20% non-empty point query,
10% empty point query, 10% non-empty point delete,
10% range delete (sel=0.0001)

Zipfian, latest
normal, uniform
Pareto

Tec-3: Near-sorted ingestion
100% insert with K=1% and L=10% uniform

Tec-4: Slow phase transitioning
p1: 70% insert, 20% non-empty point query, 10% range query;
p2: 50% insert, 30% non-empty point query, 20% range query;
p3: 30% insert, 40% non-empty point query, 30% range query

range query selectivity varies
uniformly between 0.1 and 0.2
in p1, p2 & p3

Tec-5: Discrete phase transitioning
p1: 90% insert, 5% empty point query, 5% range query;
p2: 10% insert, 70% non-empty point query, 20% range query

transition from p1 to p2
write-heavy to read-heavy

Tec-6: Variable entry size

50% insert, 50% non-empty point query key varies from 32B–256B
value varies from 32B–256B

Tec-7: Skewed access
50% insert (10% hot keys with a given prefix),
50% non-empty point query (90% queries with a given prefix)

10% hot keys in inserts
90% point query on hot keys

five KVBench benchmark workloads. We show that Tectonic scales efficiently
with increasing workload sizes. We then compare the similarity of workload
between YCSB and Tectonic by comparing the database performance using a
workload generated by YCSB and Tectonic from the same specification.

Tectonic Dominates the State of the Art when Generating YCSB
Workloads. To run these experiments, we set up all the benchmarks to gener-
ate an equal number of operations with the exact proportions and wrote them
to an output file. The YCSB benchmark generates operations on the fly to im-
prove memory utilization. To ensure an apples-to-apples comparison, we adapted
YCSB to write all operations in an output file (using Java’s BufferedWriter),
and set the same buffer size (1 MB). Other benchmarks, such as KVBench and
Tectonic, follow the same pattern and construct a workload file beforehand. We
do not compare against RocksDB’s db_bench benchmark, as it is closely tied
to RocksDB internals, and collecting all operations in an output file was not
straightforward. The Tectonic generates all different YCSB workloads 12× and
10× faster than KVBench and YCSB itself, respectively (Fig. 3(A). It shows
an improved throughput of ≈ 90%, Fig. 3(B), as it performs random key gen-
eration efficiently (using the rand_xoshiro Rust library) while optimizing the
operation generation process using ActiveKeySet containers and custom data
structures. Tectonic does an excellent job in optimizing the total memory us-
age, showing an improvement of 84%, Fig. 3(C), making it capable of generating
larger workloads. KVBench is unable to simulate YCSB-F, as it does not support
read-modify-write, and hence, is omitted in Fig. 3. For YCSB-E, which involves
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Fig. 3: Tectonic is faster than all state-of-the-art key-value generators (A) and
provides better throughput (B) while using less memory (C) for all YCSB
types of workloads. Note that KVBench can not simulate YCSB-F workload.

short-range queries that read up to 100 records, KVBench shows higher end-to-
end latency. This is because the vector is sorted every time a new range query is
generated; as an insert operation appends a new key to the vector, it becomes
unsorted. On the other hand, Tectonic is capable of generating range queries in
two formats: (i) the YCSB format, which features an open range query with a
specified scan length, and (ii) the KVBench format, which generates both start
and end keys. For Fig. 3, Tectonic follows the YCSB way of generating range
queries, which does not require sorting.
Tectonic Outperforms KVBench Across the Board. We again configure
both benchmarks to produce the same number of operations with the same key
and value sizes, as well as the same distribution or selectivity, if applicable. To
run KVBench workloads I, III, and IV, we required preloading of inserts. In
the first phase, we generate 1M insert operations, and then use this count to
compute other operation compositions. In Fig. 4, we show the performance of
Tectonic when generating KVBench workloads. The observations are as follows:
(i) Tectonic simulated all five different KVBench workloads with 1.5 order of
magnitude faster than KVBench, Fig. 4(A); (ii) it provided more than 1.5 order
of magnitude better throughput, Fig. 4(B); and (iii) it only utilized 70% less
memory than KVBench Fig. 4(C). The workload IV in KVBench generates 50%
range deletes with selectivity 0.0001% and exhibits poor throughput compara-
tively. Tectonic can emulate KVBench workloads more efficiently than KVBench
itself. Tectonic outperforms KVBench because it uses efficient data structures
to store the ActiveKeySet, such as Bloom filters, which enables it to achieve
higher throughput with a lower memory footprint.
Tectonic Scales Better than the State of the Art. In this experiment, we
vary the total number of operations (from 1M to 100M) while proportionately
scaling the constituent operations. The benchmark first generates 50% inserts
for preloading, followed by 40% inserts, 5% point queries, and 5% updates in an
interleaved fashion. Fig. 5(A) shows that Tectonic offers 1.6× and 6.4× higher
throughput than YCSB and KVBench, respectively. As we increase the size of
the workload, we observe that Tectonic’s advantages over the state of the art hold
in terms of throughput. This is because the process is CPU-bound on generating
random strings (as shown in Fig. 5(A)), and Tectonic’s String generation imple-
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Fig. 4: Tectonic emulates all KVBench generic workloads more efficiently, show-
ing (A) more than 1.5× improvement in end-to-end execution latency, (B) en-
hanced throughput, and (C) a reduced memory footprint.

mentation is faster and more efficient compared to both YCSB and KVBench. In
Fig. 5(B), however, we observe that as the workload size increases, Tectonic has a
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Fig. 5: Tectonic scales better than the state of
the art in terms of performance at the cost of a
slight increase in the memory footprint.

slightly higher memory foot-
print than YCSB. This is
because workload generation
in YCSB is memoryless, and
hence, YCSB does not sup-
port operations such as empty
point queries and empty point
deletes. For 1M operation
Tectonic still shows less mem-
ory footprint than YCSB, see
Fig. 3(C). While KVBench
supports all core key-value
operations, it requires significantly more metadata to enable them, requiring
up to 2 orders of magnitude more memory than Tectonic.

Workload Similarity with State of the Art. In Fig. 6, we compare two
workloads with the same specifications (YCSB-A with 20 million operations,
1123 bytes per entry) – one is generated by Tectonic and the other by YCSB –
by analyzing the database performance. We use RocksDB with default configura-
tions for this. The rate of bytes read and written into the database when running
the same specification workloads yields similar results, as shown in Fig. 6(A).
Inserts and updates show a similar latency pattern. Point queries too exhibit
comparable P0, P25, P75 values, as shown in Fig. 6(B). The total number of
bytes read and written during the execution of the workload shows less than 1%
difference (Fig. 6(C)). This indicates that RocksDB experienced a comparable
amount of data movement due to compactions and flushes. The cache reflects
the locality of data access in the database, and Fig. 6(D) shows exactly the
same cache hits and misses for both workload runs on RocksDB. Tectonic offers
broader distribution and operation support with high accuracy, while effectively
mimicking state-of-the-art workloads to produce similar database behaviors.
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Fig. 6: Workloads generated by Tectonic and YCSB perform similarly when
run on a production database offering (A) comparable performance for both
reads and writes, (B) latencies for inserts, point queries, and updates, (C) to-
tal data movement, and (D) cache behavior (hit and miss counts).

5 Related Work

YCSB. The Yahoo! Cloud Serving Benchmark (YCSB) [12] is a widely
used key-value benchmark for evaluating the performance of cloud-native
NoSQL databases. It provides a flexible architecture with support for various
database backends and is easily extensible. YCSB’s primary workload module,
CoreWorkload, includes support for inserts, updates, read-modify-writes, point
queries, and range queries (scans). Point queries and updates can be configured
to follow distributions such as uniform, exponential, sequential, Zipfian, latest,
and hotspot. However, YCSB lacks support for point and range deletes, and is
unable to distinguish between empty and non-empty point queries. Additionally,
it requires point queries and updates to share the same distribution.
db_bench. db_bench [15] is a benchmarking utility tightly integrated with
RocksDB [16] and LevelDB [20], offering detailed insights into internal behav-
iors and metrics. db_bench supports inserts, updates, read-modify-writes, point
queries, range queries, point deletes, and range deletes. It can simulate empty
point queries by generating keys that are guaranteed not to exist. However, mod-
ifying db_bench to serve as a general-purpose key-value benchmark requires a
significant amount of development, which has led to its limited adoption.
KVBench. KVBench [47] supports a comprehensive set of operations, including
inserts, updates, range queries, range deletes, as well as both empty and non-
empty point queries and deletes. Each operation can be assigned its own access
distribution, such as uniform, normal, beta, or Zipfian. KVBench allows limited
control over operation sequencing (e.g., interleaved vs. sequential), but it does
not support dynamic or time-varying workloads. Additionally, it lacks support for
read-modify-writes, variable-length keys and values, and complex key formats.
BoDS. Benchmark on Data Sortedness (BoDS) [34] is designed to evaluate
key-value and relational systems under varying degrees of data sortedness. It
only supports five workload types: bulk loading, individual inserts, and mixed
read/write workloads with or without preloading. BoDS allows control over data
ordering using sortedness parameters K, L, and the beta distribution B(a, b).
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However, BoDS does not support several basic key-value operations, such as read-
modify-writes, deletes, and empty point lookups, lacks support for dynamically
shifting workloads, and can not emulate complex multi-distributional workloads.
Emulating Production Workload Traces. Cao et al. presented a detailed
characterization of the real-world workload for use cases at Facebook [6]. They
presented three main workloads: UDB, a MySQL-compatible storage layer for
social graphs; ZippyDB, a distributed KV store for metadata; and UP2X, a dis-
tributed KV store for AI/ML services with frequent updates. They emulated the
real-world workloads with YCSB and db_bench, and while db_bench was able
to more accurately emulate the workloads, there is still room for improvement.
Relational Data Generators. Relational database benchmarking has a long
history, leading to the development of both industry standards and research-
focused data generators. Benchmarking suites such as TPC-C [46], TPC-DS [43],
and TPC-E [44] define schema structures and workloads for evaluating transac-
tion processing and decision-support systems. Complementing these standards,
research prototypes such as MUDD [42], Myriad [1], PDGF [32], and more recent
tools [31,18,27] have been proposed to generate large-scale multi-table datasets
that satisfy relational constraints. Each system targets specific challenges in
SQL-based models. For instance, MUDD separates data distribution from data
generation and supports snowflake schemas for decision-support benchmarks.
Myriad and PDGF provide mechanisms to ensure referential integrity by regener-
ating valid keys, while others explore efficient updates, adaptability testing, and
workload shifts. These approaches primarily focus on static relational schemas
and maintaining inter-table consistency. However, they lack the fine-grained con-
trol needed for non-relational storage engines. In particular, existing tools do not
adequately emulate multi-phase dynamic workloads with mixed operations and
shifting access patterns, nor do they expose mechanisms for controlling the gran-
ularity of key distribution or entry size.

6 Conclusion

In this paper, we present Tectonic, a highly configurable and resource-efficient
key-value benchmark that can accurately model complex real-world key-value
workloads as well as generate dynamic workloads that change over time. Tec-
tonic outperforms state-of-the-art key-value benchmarks, namely, YCSB and
KVBench, in terms of performance and resource utilization, while scaling simi-
larly to the state of the art. Tectonic also offers a fine-grained control over data
access patterns, sophisticated key and value generation strategies, dynamic work-
load parameters, and support for shifting, sorted, and near-sorted workloads.
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Tectonic: Bridging Synthetic and Real-World Workloads . . . 17

References

1. Alexandrov, A., Schiefer, B., Poelman, J., Ewen, S., Bodner, T.O., Markl, V.:
Myriad: Parallel data generation on shared-nothing architectures. In: Proceedings
of the 1st Workshop on Architectures and Systems for Big Data (ASBD ’11).
pp. 30–33 (2011). https://doi.org/10.1145/2377978.2377983, https://dl.acm.
org/doi/10.1145/2377978.2377983

2. Apache: Cassandra. http://cassandra.apache.org (2023)
3. Apache: HBase. http://hbase.apache.org/ (2023)
4. Apple: FoundationDB. https://github.com/apple/foundationdb (2018)
5. Athanassoulis, M., Ailamaki, A.: BF-Tree: Approximate Tree Indexing. Proceed-

ings of the VLDB Endowment 7(14), 1881–1892 (2014), http://www.vldb.org/
pvldb/vol7/p1881-athanassoulis.pdf

6. Cao, Z., Dong, S., Vemuri, S., Du, D.H.C.: Characterizing, Modeling, and Bench-
marking RocksDB Key-Value Workloads at Facebook. In: Proceedings of the
USENIX Conference on File and Storage Technologies (FAST). pp. 209–223 (2020)

7. Chandramouli, B., Prasaad, G., Kossmann, D., Levandoski, J.J., Hunter, J., Bar-
nett, M.: FASTER: A Concurrent Key-Value Store with In-Place Updates. In:
Proceedings of the ACM SIGMOD International Conference on Management of
Data. pp. 275–290 (2018). https://doi.org/10.1145/3183713.3196898, http:
//doi.acm.org/10.1145/3183713.3196898

8. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for
Structured Data. ACM Transactions on Computer Systems (TOCS) 26(2), 4:1—-
4:26 (2008). https://doi.org/10.1145/1365815.1365816, https://doi.org/10.
1145/1365815.1365816

9. Chatterjee, S., Jagadeesan, M., Qin, W., Idreos, S.: Cosine: A Cloud-Cost Opti-
mized Self-Designing Key-Value Storage Engine. Proceedings of the VLDB Endow-
ment 15(1), 112—-126 (2021). https://doi.org/10.14778/3485450.3485461

10. Cheng, A., Shi, X., Kabcenell, A.N., Lawande, S., Qadeer, H., Chan,
J., Tin, H., Zhao, R., Bailis, P., Balakrishnan, M., Bronson, N., Crooks,
N., Stoica, I.: TAOBench: An End-to-End Benchmark for Social Network-
ing Workloads. Proceedings of the VLDB Endowment 15(9), 1965–1977
(2022). https://doi.org/10.14778/3538598.3538616, https://www.vldb.org/
pvldb/vol15/p1965-cheng.pdf

11. CockroachDB: CockroachDB. https://github.com/cockroachdb/cockroach (2021)
12. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmark-

ing cloud serving systems with YCSB. In: Proceedings of the ACM Symposium
on Cloud Computing (SoCC). pp. 143–154 (2010). https://doi.org/10.1145/
1807128.1807152, http://doi.acm.org/10.1145/1807128.1807152

13. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s Highly
Available Key-value Store. ACM SIGOPS Operating Systems Review 41(6), 205–
220 (2007). https://doi.org/10.1145/1323293.1294281, http://dl.acm.org/
citation.cfm?id=1323293.1294281

14. Facebook: MyRocks. http://myrocks.io/ (2023)
15. Facebook: db_bench. https://github.com/facebook/rocksdb/wiki/Benchmarking-

tools (2024)
16. Facebook: RocksDB. https://github.com/facebook/rocksdb (2024)
17. Foundation, F.S.: Gnu operating system. https://www.gnu.org/software/time/

https://doi.org/10.1145/2377978.2377983
https://doi.org/10.1145/2377978.2377983
https://dl.acm.org/doi/10.1145/2377978.2377983
https://dl.acm.org/doi/10.1145/2377978.2377983
http://www.vldb.org/pvldb/vol7/p1881-athanassoulis.pdf
http://www.vldb.org/pvldb/vol7/p1881-athanassoulis.pdf
https://doi.org/10.1145/3183713.3196898
https://doi.org/10.1145/3183713.3196898
http://doi.acm.org/10.1145/3183713.3196898
http://doi.acm.org/10.1145/3183713.3196898
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.14778/3485450.3485461
https://doi.org/10.14778/3485450.3485461
https://doi.org/10.14778/3538598.3538616
https://doi.org/10.14778/3538598.3538616
https://www.vldb.org/pvldb/vol15/p1965-cheng.pdf
https://www.vldb.org/pvldb/vol15/p1965-cheng.pdf
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1807128.1807152
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1323293.1294281
http://dl.acm.org/citation.cfm?id=1323293.1294281
http://dl.acm.org/citation.cfm?id=1323293.1294281


18 A. Ott et al.

18. Frank, M., Poess, M., Rabl, T.: Efficient update data generation for DBMS
benchmarks. In: Third Joint WOSP/SIPEW International Conference on Perfor-
mance Engineering, ICPE’12, Boston, MA, USA - April 22 - 25, 2012. pp. 169–
180 (2012). https://doi.org/10.1145/2188286.2188315, https://doi.org/10.
1145/2188286.2188315

19. Geffner, S., Agrawal, D., El Abbadi, A., Smith, T.R.: Relative Prefix Sums: An
Efficient Approach for Querying Dynamic OLAP Data Cubes. In: Proceedings
of the IEEE International Conference on Data Engineering (ICDE). pp. 328–
335 (1999). https://doi.org/10.1109/ICDE.1999.754948, http://dx.doi.org/
10.1109/ICDE.1999.754948

20. Google: LevelDB. https://github.com/google/leveldb/ (2021)
21. Huang, D., Liu, Q., Cui, Q., Fang, Z., Ma, X., Xu, F., Shen, L., Tang, L.,

Zhou, Y., Huang, M., Wei, W., Liu, C., Zhang, J., Li, J., Wu, X., Song, L.,
Sun, R., Yu, S., Zhao, L., Cameron, N., Pei, L., Tang, X.: TiDB: A Raft-
based HTAP Database. Proceedings of the VLDB Endowment 13(12), 3072–
3084 (2020). https://doi.org/10.14778/3415478.3415535, http://www.vldb.
org/pvldb/vol13/p3072-huang.pdf

22. Huang, G., Cheng, X., Wang, J., Wang, Y., He, D., Zhang, T., Li, F., Wang,
S., Cao, W., Li, Q.: X-Engine: An Optimized Storage Engine for Large-scale
E-commerce Transaction Processing. In: Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data. pp. 651–665 (2019). https:
//doi.org/10.1145/3299869.3314041

23. Huynh, A., Chaudhari, H.A., Terzi, E., Athanassoulis, M.: Endure: A Robust Tun-
ing Paradigm for LSM Trees Under Workload Uncertainty. CoRR 2110.13801
(2021), https://arxiv.org/abs/2110.13801

24. Huynh, A., Chaudhari, H.A., Terzi, E., Athanassoulis, M.: Endure: A Robust
Tuning Paradigm for LSM Trees Under Workload Uncertainty. Proceedings of
the VLDB Endowment 15(8), 1605–1618 (2022). https://doi.org/0.14778/
3529337.3529345, https://doi.org/10.14778/3529337.3529345

25. Keahey, K.: Chameleon: Experimental Platform for Cloud Computing
Research. https://www.chameleoncloud.org/media/cms_page_media/17/GENI-
lex.pdf (2018)

26. Kryczka, A.: Compaction Styles. https://github.com/facebook/rocksdb/blob/gh-
pages-old/talks/2020-07-17-Brownbag-Compactions.pdf (2020)

27. Li, Y., Zhang, R., Li, Y., Ke, S., Zhang, S., Zhou, A.: Lauca: Generating
Application-Oriented Synthetic Workloads. CoRR abs/1912.0 (2019), http://
arxiv.org/abs/1912.07172

28. Mo, D., Chen, F., Luo, S., Shan, C.: Learning to Optimize LSM-trees: Towards A
Reinforcement Learning based Key-Value Store for Dynamic Workloads. CoRR
abs/2308.0 (2023). https://doi.org/10.48550/ARXIV.2308.07013, https://
doi.org/10.48550/arXiv.2308.07013

29. Nuessle, C., Kennedy, O., Ziarek, L.: Benchmarking Pocket-Scale Databases. In:
Performance Evaluation and Benchmarking for the Era of Cloud(s) - 11th TPC
Technology Conference, TPCTC 2019, Los Angeles, CA, USA, August 26, 2019,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 12257, pp.
99–115 (2019). https://doi.org/10.1007/978-3-030-55024-0_7, https://doi.
org/10.1007/978-3-030-55024-0{_}7

30. Power, C., Patel, H., Jindal, A., Leeka, J., Jenkins, B., Rys, M., Triou, E., Zhu,
D., Katahanas, L., Talapady, C.B., Rowe, J., Zhang, F., Draves, R., Santa, I.,
Kumar, A.: The Cosmos Big Data Platform at Microsoft: Over a Decade of

https://doi.org/10.1145/2188286.2188315
https://doi.org/10.1145/2188286.2188315
https://doi.org/10.1145/2188286.2188315
https://doi.org/10.1145/2188286.2188315
https://doi.org/10.1109/ICDE.1999.754948
https://doi.org/10.1109/ICDE.1999.754948
http://dx.doi.org/10.1109/ICDE.1999.754948
http://dx.doi.org/10.1109/ICDE.1999.754948
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.14778/3415478.3415535
http://www.vldb.org/pvldb/vol13/p3072-huang.pdf
http://www.vldb.org/pvldb/vol13/p3072-huang.pdf
https://doi.org/10.1145/3299869.3314041
https://doi.org/10.1145/3299869.3314041
https://doi.org/10.1145/3299869.3314041
https://doi.org/10.1145/3299869.3314041
https://arxiv.org/abs/2110.13801
https://doi.org/0.14778/3529337.3529345
https://doi.org/0.14778/3529337.3529345
https://doi.org/0.14778/3529337.3529345
https://doi.org/0.14778/3529337.3529345
https://doi.org/10.14778/3529337.3529345
http://arxiv.org/abs/1912.07172
http://arxiv.org/abs/1912.07172
https://doi.org/10.48550/ARXIV.2308.07013
https://doi.org/10.48550/ARXIV.2308.07013
https://doi.org/10.48550/arXiv.2308.07013
https://doi.org/10.48550/arXiv.2308.07013
https://doi.org/10.1007/978-3-030-55024-0_7
https://doi.org/10.1007/978-3-030-55024-0_7
https://doi.org/10.1007/978-3-030-55024-0{_}7
https://doi.org/10.1007/978-3-030-55024-0{_}7


Tectonic: Bridging Synthetic and Real-World Workloads . . . 19

Progress and a Decade to Look Forward. Proceedings of the VLDB Endow-
ment 14(12), 3148–3161 (2021). https://doi.org/10.14778/3476311.3476390,
http://www.vldb.org/pvldb/vol14/p3148-jindal.pdf

31. Rabl, T., Lang, A., Hackl, T., Sick, B., Kosch, H.: Generating Shifting Work-
loads to Benchmark Adaptability in Relational Database Systems. In: Perfor-
mance Evaluation and Benchmarking, First TPC Technology Conference, TPCTC
2009, Lyon, France, August 24-28, 2009, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 5895, pp. 116–131 (2009). https://doi.org/10.1007/
978-3-642-10424-4_9, https://doi.org/10.1007/978-3-642-10424-4{_}9

32. Rabl, T., Poess, M.: Parallel data generation for performance analysis of large, com-
plex RDBMS. In: Proceedings of the International Workshop on Testing Database
Systems (DBTest). p. 5 (2011). https://doi.org/10.1145/1988842.1988847,
https://doi.org/10.1145/1988842.1988847

33. Raman, A., Huynh, A., Lu, J., Athanassoulis, M.: Benchmarking Learned and LSM
Indexes for Data Sortedness. In: Proceedings of the International Workshop on
Testing Database Systems (DBTest). pp. 16–22. DBTest ’24 (2024). https://doi.
org/10.1145/3662165.3662764, https://doi.org/10.1145/3662165.3662764

34. Raman, A., Karatsenidis, K., Sarkar, S., Olma, M., Athanassoulis, M.: BoDS: A
Benchmark on Data Sortedness. In: Performance Evaluation and Benchmarking -
TPC Technology Conference (TPCTC). pp. 17–32 (2022)

35. Raman, A., Karatsenidis, K., Xie, S., Olma, M., Sarkar, S., Athanassoulis, M.:
QuIT your B+-tree for the Quick Insertion Tree. In: Proceedings of the Inter-
national Conference on Extending Database Technology (EDBT). pp. 451—-463
(2025). https://doi.org/10.48786/EDBT.2025.36, https://doi.org/10.48786/
edbt.2025.36

36. Raman, A., Sarkar, S., Olma, M., Athanassoulis, M.: Indexing for Near-Sorted
Data. In: Proceedings of the IEEE International Conference on Data Engineering
(ICDE). pp. 1475–1488 (2023)

37. RocksDB: Prefix seek. https://github.com/facebook/rocksdb/wiki/Prefix-Seek
38. RocksDB: Prefix Bloom Filter. https://github.com/facebook/rocksdb/wiki/Prefix-

Seek#configure-prefix-bloom-filter (2020)
39. Sarkar, S., Papon, T.I., Staratzis, D., Athanassoulis, M.: Lethe: A Tunable Delete-

Aware LSM Engine. In: Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data. pp. 893–908 (2020). https://doi.org/10.1145/
3318464.3389757

40. Sarkar, S., Papon, T.I., Staratzis, D., Zhu, Z., Athanassoulis, M.: Enabling Timely
and Persistent Deletion in LSM-Engines. ACM Transactions on Database Systems
(TODS) 48(3), 8:1—-8:40 (2023). https://doi.org/10.1145/3599724, https://
doi.org/10.1145/3599724

41. Sarkar, S., Staratzis, D., Zhu, Z., Athanassoulis, M.: Constructing and Analyzing
the LSM Compaction Design Space. Proceedings of the VLDB Endowment 14(11),
2216–2229 (2021). https://doi.org/10.14778/3476249.3476274, http://vldb.
org/pvldb/vol14/p2216-sarkar.pdf

42. Stephens, J.M., Poess, M.: MUDD: a multi-dimensional data generator. In: Pro-
ceedings of the Fourth International Workshop on Software and Performance,
WOSP 2004, Redwood Shores, California, USA, January 14-16, 2004. pp. 104–109
(2004). https://doi.org/10.1145/974044.974060, https://doi.org/10.1145/
974044.974060

43. TPC: Specification of the TPC-DS benchmark. http://www.tpc.org/tpcds/
44. TPC: Specification of TPC-E benchmark. http://www.tpc.org/tpce/

https://doi.org/10.14778/3476311.3476390
https://doi.org/10.14778/3476311.3476390
http://www.vldb.org/pvldb/vol14/p3148-jindal.pdf
https://doi.org/10.1007/978-3-642-10424-4_9
https://doi.org/10.1007/978-3-642-10424-4_9
https://doi.org/10.1007/978-3-642-10424-4_9
https://doi.org/10.1007/978-3-642-10424-4_9
https://doi.org/10.1007/978-3-642-10424-4{_}9
https://doi.org/10.1145/1988842.1988847
https://doi.org/10.1145/1988842.1988847
https://doi.org/10.1145/1988842.1988847
https://doi.org/10.1145/3662165.3662764
https://doi.org/10.1145/3662165.3662764
https://doi.org/10.1145/3662165.3662764
https://doi.org/10.1145/3662165.3662764
https://doi.org/10.1145/3662165.3662764
https://doi.org/10.48786/EDBT.2025.36
https://doi.org/10.48786/EDBT.2025.36
https://doi.org/10.48786/edbt.2025.36
https://doi.org/10.48786/edbt.2025.36
https://doi.org/10.1145/3318464.3389757
https://doi.org/10.1145/3318464.3389757
https://doi.org/10.1145/3318464.3389757
https://doi.org/10.1145/3318464.3389757
https://doi.org/10.1145/3599724
https://doi.org/10.1145/3599724
https://doi.org/10.1145/3599724
https://doi.org/10.1145/3599724
https://doi.org/10.14778/3476249.3476274
https://doi.org/10.14778/3476249.3476274
http://vldb.org/pvldb/vol14/p2216-sarkar.pdf
http://vldb.org/pvldb/vol14/p2216-sarkar.pdf
https://doi.org/10.1145/974044.974060
https://doi.org/10.1145/974044.974060
https://doi.org/10.1145/974044.974060
https://doi.org/10.1145/974044.974060


20 A. Ott et al.

45. TPC: TPC-H benchmark. http://www.tpc.org/tpch/ (2021)
46. TPC: Specification of TPC-C benchmark. http://www.tpc.org/tpcc/ (2022)
47. Zhu, Z., Saha, A., Athanassoulis, M., Sarkar, S.: KVBench: A Key-Value Bench-

marking Suite. In: International Workshop on Testing Database Systems (DBTest).
pp. 9—-15 (2024). https://doi.org/10.1145/3662165.3662765, https://doi.
org/10.1145/3662165.3662765

https://doi.org/10.1145/3662165.3662765
https://doi.org/10.1145/3662165.3662765
https://doi.org/10.1145/3662165.3662765
https://doi.org/10.1145/3662165.3662765

	Tectonic: Bridging Synthetic and Real-World Workloads for Key-Value Benchmarking

