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ABSTRACT
Log-structured merge (LSM) tree is an ingestion-optimized data
structure that is widely used in modern NoSQL key-value stores.
To support high throughput for writes, LSM-trees maintain an in-
memory buffer that absorbs the incoming entries before writing
them to slower secondary storage. We point out that the choice
of the data structure and implementation of the memory buffer
has a significant impact on the overall performance of LSM-based
storage engines. In fact, even with the same implementation of
the buffer, the performance of a storage engine can vary by up to
several orders of magnitude if there is a shift in the input workload.

In this paper, we benchmark the performance of LSM-based stor-
age engines with different memory buffer implementations and
under different workload characteristics. We experiment with four
buffer implementations, namely, (i) vector, (ii) skip-list, (iii) hash
skip-list, and (iv) hash linked-list, and for each implementation, we
vary any design choices (such as bucket count in a hash skip-list and
prefix length in a hash linked-list). We present a comprehensive per-
formance benchmark for each buffer configuration, and highlight
how the relative performance of the different buffer implementa-
tions varies with a shift in input workload. Lastly, we present a
guideline for selecting the appropriate buffer implementation for a
given workload and performance goal.
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1 INTRODUCTION
LSM-Based Key-Value Stores. Log-structured merge (LSM) trees
are widely used in the storage engines of modern NoSQL key-value
stores [18, 20, 21]. LSM-tree is a highly ingestion-optimized, out-
of-place data structure that stores data on disk as a hierarchical
collection of immutable sorted runs [22, 23]. Immutability in the file
structure means updates and deletes in LSM-based storage engines
are always realized out of place, by inserting new entries (or meta-
entries, in case of deletes) that logically invalidate the older target
entries [6, 25, 26, 30]. By avoiding in-place updates and deletes
LSM-engines are able to offer superior ingestion performance. To
facilitate fast queries, commercial LSM-engines often employ auxil-
iary data structures, such as Bloom filters and fence pointers, that
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Fig. 1: (a) An increase in number of point queries affects
the latency of other operations significantly in a vector
buffer. (b) Pre-allocated vector offers better insert perfor-
mance than dynamically allocated vector and skip-list.

reduces the overall number of accesses to slower disks [10, 24]. Due
to these advantages, a large number of commercial NoSQL systems,
including LevelDB [16] and BigTable [8] at Google, RocksDB [14]
at Meta, X-Engine [17] at Alibaba, WiredTiger [28] at MongoDB,
CockroachDB [9] at Cockroach Labs, and AsterixDB [1], Cassan-
dra [3], HBase [4], and Accumulo [2] at Apache, have adopted
LSM-trees to implement their storage layer.
LSM-Buffer and its Implementation. To ensure high through-
put for inserts and to avoid writing data eagerly to slower sec-
ondary storage, LSM-trees buffer the incoming entries first in mem-
ory [19, 23]. The buffer in main memory acts as the primary storage
component of an LSM-tree and has a predetermined capacity (typi-
cally, 1MB-128MB) [7, 11, 21]. Once full, entries in the buffer are
sorted on the key and are written to the first level of a hierarchi-
cal collection of immutable sorted runs on disk. We refer to this
process of persisting the contents of the buffer to disk as flush [22].
Buffering inserts in memory allows LSM-engines to amortize the
number of disk I/Os performed while inserting data and makes
them optimized for ingestion [27]. In practice, systems use different
data structures with widely varying implementations to implement
the memory buffer. Vector, skip-list, linked-list, and hybrid data
structures, such as hash skip-list and hash linked-list, are some of
the commonly used data structures in commercial LSM-based stor-
age engines [12, 13]. Each data structure brings a different tradeoff
between performance and memory footprint [5].
Challenge: Determining the “Best” Buffer Implementation.
We point out that despite being a disk-based data structure, the
choice of data structure for the memory buffer has huge im-
plications on the overall performance of an LSM-engine. We
highlight two scenarios where the choice of the buffer data struc-
ture and its implementation has critical performance implications.
(A) For the same buffer data structure, the performance numbers
may vary significantly with the slightest shift in the workload char-
acteristics. In Fig. 1(a), we show that the average operational latency
for an LSM-engine with a (static) vector buffer-implementation
increases by 36× if the input workload shifts from insert-only to
having only 0.1% point queries. (B) For the same data structure,
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different implementations and tunings also has a significant impact
on performance. For example, as shown in Fig. 1(b), the tail latency
(𝑃100) of a dynamically allocated vector can be almost more than
one order of magnitude higher than that of a pre-allocated vector.

The choice and implementation of the memory buffer in
state-of-the-art LSM-engines is agnostic of workload and

performance goal which leads to sub-optimal performance overall.

Benchmarking LSM-Buffers. To this end, in this work, we bench-
mark the performance of LSM-based storage engines with different
implementation and tuning of the memory buffer. We take four
buffer implementations: (i) vector, (ii) skip-list, (iii) hash skip-list,
and (iv) hash linked-list, commonly used in LSM-engines for the
benchmark. For the vector implementation, we perform experi-
ments with both (v) fixed and (vi) dynamically allocated memory
space. For hash skip-list and hash linked-list, we vary (vii) the num-
ber of hash-buckets and (viii) the length of the key-prefix used
for hashing. In addition, we perform experiments by varying the
workload characteristics to highlight the performance implication
of workload shifts. The overarching objective of this endeavor is to
construct a set of guidelines for researchers and practitioners that
would enable to choose the appropriate buffer implementation for
an LSM-engine given a workload and some performance goal.
Contributions. The contributions of our work is as follows.
(1) Workload-Aware Performance Modeling: We develop a

benchmark1 for the buffer implementation in LSM-engines for
a diverse set of key-value workloads, showcasing the impact of
buffer implementation and workload on performance.

(2) The Memory vs. Performance Tradeoff: In addition to the
raw performance numbers on throughput for inserts and queries,
and operational latency, we measure the memory footprint of
every buffer implementation and discuss how different imple-
mentations navigate the memory vs. performance tradeoff.

(3) Answer What-If Questions: We consolidate the key take-
aways from the experiments in form of a handbook that, given
a workload and target performance, would allow us to avoid
the objectively worst design choices to implement the memory
buffer and answer complex what-if questions, such as:
(a) What is the appropriate buffer design for an ingestion-

heavy workload?
(b) How to avoid write stalls when processing a workload with

interleaved in point queries and inserts?
(c) How to set the bucket count or the prefix length for hashing

in a hash skip-list buffer?

2 BENCHMARK DESIGN
In this section, we discuss construction of the LSM-buffer bench-
mark and the evaluation methodology.

2.1 Buffer Implementation
The memory buffer in LSM-trees serve as a staging area for writes
(inserts, updates, and deletes) before they are flushed to disk. Batch-
ing inserts in the main memory allows for amortizing the cost of

1Our code is available at https://github.com/SSD-Brandeis/LSMMemoryProfiling.

writes. Retaining the ingested entries in the buffer also allows fu-
ture point queries on the recently ingested entries to be returned
directly from the buffer, without any disk access. This can signif-
icantly improve the throughput for point queries on “hot” data.
Below, we discuss the design and configuration of four memory
buffer implementations, namely vector, skip-list, hash skip-list and
hash linked-list, that we use for the benchmark.
Vector. We experiment with two vector implementations of the
memory buffer. The first is a dynamic vector that is implemented
as an automatically re-sizing array. A dynamic vector ensures that
the data in the buffer is stored in contiguous memory locations.
Inserts to such a vector is appended to the array if there is avail-
able space. Otherwise, the array size is doubled through re-sizing
before appending the new entry. While appending inserts allows
for high throughput for writes, the cost of point queries becomes
prohibitively high as they may need to scan the entire buffer. Pro-
duction systems, using a dynamic vector implementation for the
buffer, thus, sort the buffer every time there is a point query in
the workload. The optimistic outlook here is that for future point
queries that precede the next insert, the target entry can be searched
using binary search. A dynamical vector suffers from high latency
spikes resulting from (i) re-sizing of buffer or (ii) sorting the buffer
contents during a point query. Alternatively, a fixed-sized vector
requires allocating the designated memory space upfront, but is bet-
ter suitable for latency-sensitive applications as it offers predictable
performance with no latency spikes. The vector implementation has
little memory overhead as it needs to maintain minimal metadata.
Skip-List. The default buffer implementation in many systems,
such as RocksDB [13] and LevelDB [16], is skip-list. A skip-list is
implemented as a hierarchical structure of linked-lists, where in-
termediate levels act as an index for the last level which stores the
data in sorted order. Skip-lists offer logarithmic𝑂 (log𝑛) complexity
for inserts, updates, deletes, as well as point queries. However, the
hierarchical structure of skip-lists requires maintaining additional
key-pointer pairs for indexing purposes, and this adds to the meta-
data overhead of the data structure. For example, a skip-list with
four levels, requires a memory of roughly 1.33× of the data size.
Hash Skip-List. A memory buffer implemented as a hash skip-
list combines a hash table with skip-lists within each bucket. The
keys to be inserted are partitioned on their prefix (of a predeter-
mined length) for bucket allocation, facilitating targeted insertions
and point queries through a combination of hashing and binary
search. This structure offers superior performance for ingestion,
point queries, as well as, range queries with very small selectivity,
as the operations are typically limited to only a specific hash-bucket.
Range queries with large selectivity, however, may span across mul-
tiple hash-buckets and, therefore, may have a significantly higher
latency. The design of the hash skip-list involves configuring the
number of buckets (H ) and specifying a prefix extractor, typically
the first𝑋 characters of the key. The role of the prefix extractor is to
isolate the prefix from the key and hash it to the appropriate bucket.
Each bucket, in turn, is a skip-list that contains the key-value pairs.
The entire key (including the prefix) is stored in the skip-list as
we need to facilitate range queries. The point queries are realized
by simply hashing the prefix to locate the target bucket and then
by searching through skip-list. The memory overhead of the hash

https://github.com/SSD-Brandeis/LSMMemoryProfiling
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Fig. 2: Different buffer implementations offer varying per-
formances tradeoffs. (a) Vector is not good for point and
range queries but best for insert-only workloads. (b) The
performance of the hash-based buffer implementations
depends on prefix length and number of buckets.

skip-list includes the additional space needed to maintain the hash
table and the pointers to each skip-list. Due to additional memory
overhead, for same memory budget, a hash skip-list can buffer fewer
key values compared to skip-list and vector before it is saturated.
Hash Linked-List. Similarly to the hash skip-list, the hash linked-
list also uses a hash table framework. However, within each hash-
bucket the entries are stored as a sorted singly linked-list. This de-
sign is particularly tailored for efficiently handling range queries on
specific key prefixes. It also offers a similar ingestion performance
as the hash skip-list with less memory overhead. For point queries,
the hash linked-list relies on linear search within each linked-list,
which leads to a higher query latency. The hash linked-list has a
lower memory overhead compared to the hash skip-list, primarily
because it eschews the layered structure inherent to skip-lists.

2.2 Evaluation Metric
The choice of write buffer and its implementation have critical impli-
cations on the performance of LSM-engines. Below, we discuss the
key metrics along which we compare the buffer implementations.
• Memory footprint quantifies the overall memory required by
each buffer implementation to store a given number of entries,
including all corresponding metadata.

• Reads latency specifically captures the point and range query
performance for entries in the buffer. The goal is to capture the
impact of the buffer implementation on in-memory reads.

• Writes latency measures how fast data is written to the write
buffer. This does not include flush of compaction overheads.

• Flush and compaction counts refer to the frequency of flushing
the buffer content to the disk and the frequency of compacting the
data on disk to create fewer but longer sorted runs, respectively.

The different workload characteristics may have different resource
requirements in terms of memory, CPU, and I/O. The write buffer

type also contributes to the performance of the system. Fig. 2(a)
shows a comparison of different buffer implementations for four
types of workloads (i) insert only, (ii) insert with point queries,
(iii) insert with small-range queries, (iv) insert with long-range
queries. We observe that vector performs best for an insert-only
workload, but can become a pain-point for the point and range
queries. Similarly, a buffer implemented as a hash skip-list and
the hash linked-list realizes inserts and point queries better than a
vector and a skip-list, but the performance is heavily dependent on
the prefix length and the number of buckets. Fig. 2(b) shows how
the mean query latency for a hash skip-list buffer changes with
the prefix lengths and the number of hash buckets. Our goal is to
provide a detailed comparative analysis of how various write buffer
designs affect the overall performance of LSM-based systems.

3 EXPERIMENTAL EVALUATION
To ensure a comprehensive evaluation, we have selected three
classes of workloads, each designed to test the write buffers under
different scenarios: (a) inserts with interleaved point queries, (b)
inserts with interleaved range queries (small selectivity), and (c)
inserts with interleaved range queries (large selectivity).

3.1 Experimental Setup
We run the experiments on a virtual machine equipped with 2 Intel
Gold 6126 vCPUs at 2.60GHz, 192GB of DDR4 RAM, a 22MB L3
cache, and 240GB of SSD storage, running Ubuntu 20.04 LTS. The
implementation is done on RocksDB (v9.0.0) which is a widely used,
open source LSM-based storage engine [15]. To capture the raw
performance, we configure RocksDB to use only one thread for
compactions and one thread for flushes. We also disable the write-
ahead log (WAL) to ensure that the performance is not affected by
the WAL. Note that enabling WAL would not change the trends
for any of the experiments. Unless otherwise mentioned, the size
of a key-value pair is 64B and the size of each disk page is 4KB.
The size of the buffer is 16MB. The tree has a size ratio of 4, i.e.,
each level on disk is 4× larger than the previous level. 𝑁 is the total
number of records in the workload. The generate the experimental
workload using the KVBench generator [29].

3.2 Memory Footprint
Different buffer implementations may have a widely varying mem-
ory footprint when storing the same amount of data. In this set of
experiments, we reveal the trade-off between the memory footprint
and the storage capacity of different write buffer implementations.
Setup:We experiment by inserting 1.5M entries into the memory
buffer for every implementation and measure the memory footprint.
For hash skip-list and hash linked-list, the bucket count (𝐻 ) and the
prefix length (𝑋 ) are varied from 10 to 1000 and 2 to 10, respectively.
Hybrid Buffer Implementations have Low Memory Utiliza-
tion. Fig. 3(a) and (b) demonstrates that the vector exhibits the
lowest memory footprint due to its contiguous storage and index-
ing is done implicitly without additional metadata overhead. A
skip-list requires more memory than a vector as its hierarchical
structure requires maintaining within and across the levels. A hash
skip-list, on the other hand, has a higher memory footprint than a
skip-list because of the additional overhead of maintaining a hash
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Fig. 3: Increase in (a) prefix length or (b) bucket count re-
duces the number of entries that the hash-based hybrid
memory buffer can store, due to the overhead of pointers.

table and any necessary pointers. The memory footprint of skip-list
and hash linked-list for prefix length of 2 (Fig. 3(a)) and bucket
count of 1 (Fig. 3(b)) are close to that of skip-list. However, as the
prefix length or bucket count increases, the metadata overhead for
the two hybrid hash data structures shoot up, which means the
buffers can store fewer entries before they are full.

3.3 Read Performance
Point queries in LSM-engines return the latest entries with a
matching key, if found. The buffer implementation and tuning
affects the point query performance in memory significantly. For
instance, a vector buffer has a time complexity of 𝑂 (𝑛), where
𝑛 is the number of entries in the buffer, for point queries as the
unsorted buffer needs to be scanned linearly. An alternative is to
sort the buffer and perform a binary search. This reduces the search
time to 𝑂 (log𝑛), but adds an overhead of 𝑂 (𝑛 log𝑛) for sorting. A
skip-list serves point queries with a time complexity of 𝑂 (log𝑛)
by leveraging its hierarchical structure. Hash skip-list and hash
skip-list offers the best performance for point queries if the prefix
length (X ) and the number of buckets (H ) are tuned appropriately.
At the two extremes: (i) setting the prefix length too small (say, to 0)
results in all keys being stored in a single bucket; (ii) increasing the
prefix length to the maximum length of the keys while maintaining
only one bucket leads to the same problem. Ideally, the number
of buckets should 256X (assuming character-based prefix) as this
would mean keys with the same 𝑋 -bit prefix are mapped to the
same bucket. In fact, the hybrid hash data structures can achieve
the theoretical lower bound for the point query time complexity
(i.e.,𝑂 (1)) when 𝑋 is set to the maximum key length, we have 256X
buckets in memory. However, this does not scale in practice as the
memory requirement increases exponentially with the prefix length
(e.g., 65K for 𝑋 = 2 and about 16M for 𝑋 = 3.
Setup: For this set of experiments, we insert 140K entries of length
64B, with 200 point queries randomly interleaved, and we measure
the time taken to execute each query. In Fig. 4, the first row of plots
compares the point query latency of a skip-list buffer implemen-
tation (the default choice in RocksDB [13]) and the other buffer
implementations. The second row of plots shows how prefix length
and bucket count affects the point query performance for a hash
skip-list and a skip-list. The point queries begin after 75% of the
inserts have been completed. The queries are uniformly interleaved
with the remaining operations.
PointQueries are ProhibitivelyCostlyWithout Indexes. Fig. 4(a)
shows that the implicit indexes of a vector do not benefit point

queries. In fact, for interleaved queries, the point query cost can be
up to 12× higher than that of a skip-list. This is because, the read
path in RocksDB requires sorting the entries in the buffer before
performing a binary search. We also observe that as the buffer be-
comes fuller, the cost of sorting and searching increases linearly.
The spikes in the plot reflect the cost of sorting the buffer before the
binary search. The sort function of the standard library of C++ uses
introspective sorting by doing a selection of algorithms dynami-
cally to optimize performance. It begins with quicksort, switches
to heapsort when the recursion depth exceeds a level based on the
number of elements being sorted, and finally, switches to insertion
sort when the number of elements is below a threshold. Fig. 4(b)
and (c) demonstrate that hash skip-list (for 𝑋 = 6 and 𝐻 = 100K)
exhibits the best performance for point queries, while the hash
linked-list performs better than the vector and the skip-list. Fig. 4(d)-
(f) illustrate that a bad choice of prefix length and bucket count can
lead to suboptimal performance for point queries for hash-based
hybrid buffer implementations.
Range queries in LSM-trees return the latest versions of all keys
within a given range. During a range query, all entries in the buffer
within the query range must be fetched, merged with the data from
disk to eliminate any stale data, and returned as part of the query re-
sult. Due to the lack of inherent ordering, a vector buffer must scan
through all entries to locate the qualifying entries. This adds a signif-
icant overhead to the range query cost. In contrast, data structures
with explicit indexes, such as skip-list and the hybrid hash-based
data structures can efficiently filter out the non-qualifying entries
reducing the cost of range queries.

In particular, hash skip-list and hash linked-list are designed to
optimize range queries by leveraging the 𝑂 (1) time complexity of
a hash table to locate the correct hash bucket. This performance
comes with a restriction of the entire range having the same prefix.
The range query path is as follows: (i) locate the correct hash bucket,
(ii) perform a seek operation in the bucket to locate the target or
a key greater than target, and (iii) scan the bucket and return the
keys that are within the range. If a range query spans over multiple
prefixes, a hash skip-list or a hash linked-list will perform a copy and
sort operations to find all the keys within the range. This requires
iterating over all qualifying buckets and perform a seek operation
to locate the keys. This may happen if the prefix is large enough
(let’s say 3, the prefix sample space will be 2563) and the number
of buckets is less than that (say, 10K). Now each bucket will have
keys from 2563/10𝐾 ≈ 1667 prefixes on average. The performance
depends on the number of buckets qualifying for a given range and
the number of keys it needs to seek over to construct the result set.
Setup:We run the experiments with different selectivity and record
the time taken to execute each range query. We hand-picked values
for X and H based on our observations from the point queries
experiments. We observed two extreme cases (i) a small prefix
with a large bucket count and (ii) a long prefix with a small bucket
count. In both cases, the performance is suboptimal as in both cases,
multiple prefixes will be mapped to the same bucket, increasing the
cost of search within every bucket.
Hash-BasedHybrid BuffersDominate theRangeQuery Space.
Fig. 5 shows the comparison of range queries performance for dif-
ferent buffer implementations for selectivity 0.0001, 0.02, and 0.4 in
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Fig. 5(a), (b), and (c), respectively. The vector implementation shows
the poorest performance for both short and long-range queries as
regardless of the selectivity, it has to scan the entire buffer. This
explains the peaks and the associated high latency observed in
Fig. 5(a). For each range query, the vector first sorts the data in
memory and then performs a binary search to locate the starting
key. For hash skip-list and hash linked-list, the increase in the prefix
length with the same number of buckets for range queries with
low selectivity leads to poor performance if the start and end of the
range has different prefixes. This is because the filtering overhead
dominates the cost of range queries and we end up processing a
large amount of data to filter out the qualifying few. For the skip-
list, the peaks arise from accessing different sets of keys during
a range query. For hash skip-list and linked-list, the spikes occur
when RocksDB creates a temporary skip-list view or snapshot of
the data within the memory buffer before executing a range query.

3.4 Ingestion Performance
Setup: To measure the ingestion performance of the different mem-
ory buffer implementations, we run a set of experiments in which
we insert 140K entries of 64B, and record the time taken to realize
each insert. Note that to quantify the impact of the buffer imple-
mentation on inserts, we only measure the time taken to insert an
entry into the buffer. The analysis of writing the data from memory
to disk through flush and compaction in discussed in Section 3.5.
AVector BufferOffers theBest IngestionPerformance. Fig. 1(b)
illustrates the comparison of write performance across the different
write buffer implementations. The ingestion process for a vector
write buffer is analogous to appending bytes to an array. A typical
vector implementation dynamically allocates memory, doubling
the allocation when the existing space is exhausted. This can lead
to poor performance due to the copying of the buffer content ev-
ery time the memory is reallocated. The pre-allocation of memory
serves as a remedy for this inefficiency. As depicted in Fig. 1 (b), the
dynamic memory allocation in a vector leads to latency spikes dur-
ing ingestion. In contrast, Fig. 1 shows the enhanced performance
for a pre-allocated vector, where the memory of𝑁 ×(𝐸+10) ≈ 11MB
was pre-allocated to the buffer. The inherent sorting nature of skip-
list also slows down write operations as it requires 𝑂 (log𝑛) time
to locate the correct insertion location for every new key whereas,
a vector simply append the new key to the end of the array and
shows a superior write performance over a skip-list.

Both the hash skip-list and the hash linked-list exhibit improved
write performance compared to the skip-list. These structures cap-
italize on the 𝑂 (1) time complexity afforded by a hash table to
identify the correct hash bucket. This is followed by𝑂 (log 𝑃 ·𝐵

𝐻
) for

searching a key within the hash skip-list and on average𝑂 ( 𝑃 ·𝐵
𝐻

) in
the hash linked-list. The improved performance (assuming uniform
data distribution) can be achieved with a careful choice of X and
H. The results of our experiments, as plotted in Fig. 1 do not show



DBTest ’24, June 9, 2024, Santiago, AA, Chile Shubham Kaushik and Subhadeep Sarkar

writes reads
0

100

200

300

400

500

re
ad

an
d

w
ri

te
(M

B
)

(a) compactions flushes
0

2

4

6

8

10

op
er

at
io

n
s

co
u

n
t

(b)

vector skip list hash skip list X 4 H 100K hash link list X 4 H 100K

Fig. 6: (a) The write and read amplification is very high
when using hash skip-list memory buffer, whereas the
vector buffer has the least write and read amplification. (b)
The total number of compactions and flushes is higher for
hash skip-list memory buffer.

the insert latency. However, the latency for inserting 140K records
indicates that the skip-list is 5× and 7× slower than the hash skip-list
and the hash linked-list, respectively.

3.5 Flush & Compaction Performance
Buffer Implemetations with Explicit Indexes Flush and Com-
pact Frequently. The rate of flushes in LSM-tree can increase
the read and write amplifications, which can impact the overall
performance of the system. For every flush operation, the buffer is
written to the disk as a new file. The system has two choices: either
1) to create a new file and write to the first level on disk, i.e., to
Level 0, or 2) read the existing (overlapping) files from Level 0 and
then write the merged file back to Level 0. The first choice may lead
to a larger number of smaller files at Level 0, which will increase
the number of file handles that need to be managed by the system.
The second choice will increase the read and write amplifications
as the system needs to read the existing files, merge them with the
buffer and then write the merged file(s) back to the level.

A hash skip-list or hash linked-list buffer with a large number
of buckets can get full very quickly because of the hash table and
pointers overhead. This leads to frequent flushes which will end
up in one of the above discussed scenarios. To measure the number
of flushes and compactions, we ran our experiments with unique
1M inserts and recorded the number of flushes, compactions and
total number of bytes read and written to the disk. Fig. 6 shows the
comparison of flushes and compactions for different write buffer
implementations. The hash skip-list due to its large memory re-
quirement shows almost 0.5× more flushes and 0.7× more writes.
The vector implementation shows the least number of flushes and
compactions among all the buffer implementations.

4 DISCUSSION
Choice of Buffer Implementation. Our analysis reveal that the
design and implementation of memory buffer in LSM-based storage
engines have significant implications on the overall performance of
the system. Our results demonstrate that a vector buffer enhances
the ingestion performance by up to 10× compared to other im-
plementations, such as skip-list, hash skip-list, and hash linked-list
(refer to Fig. 2). For workloads characterized by a mix of point

queries and inserts, it is advised that one avoids using a vector
buffer. This configuration tends to induce write stalls due to the
necessity of sorting and binary searching within the entire buffer,
compounded by the overheads of data relocation inherent to vec-
tor buffers. Instead, employing a skip-list or hash-based buffer can
mitigate these issues by enhancing responsiveness and reducing
overall latency. Moreover, the adoption of a pre-allocated vector
buffer can significantly diminish performance variability, enhanc-
ing peak performance by up to two orders of magnitude for specific
configurations as shown in Fig. 1(b). These observations underscore
the importance of buffer configuration in tuning LSM-based storage
engines for enhanced performance.
Selection of Bucket Count and Prefix Length for Hash-Based
Hybrid Buffers. Setting bucket count and prefix length for hashing
in a hash skip-list buffer requires a careful consideration to optimize
performance. Factors such as the prefix length and bucket count
must be tailored to the specific characteristics of the workload. A
shorter prefix length may increase the risk of bucket overflows,
whereas a longer prefix could lead to sparse bucket utilization
and higher memory overhead. Similarly, a large bucket count can
improve performance for point queries as it cuts down the bucket
search times, but this has a prohibitively high memory overhead.
Storage Hardware and Memory Availability. Solid state drives
(SSDs) have lower write latency and higher throughput compared
to hard disk drives (HDDs). LSM-trees are designed to optimize
the write performance by sequentially writing data to the memory
buffer and periodically flushing it to the disk in form of immutable
sorted runs. Compares to classical HDDs which rely on mechanical
movement of the disk arm to write data, SSDs offer high parallelism
for sequential writes by design, and therefore, offer significantly
better throughput for ingestion-heavy workloads. The amount of
available memory also plays a critical role in the performance of
LSM-based storage engines. More memory allows for larger mem-
ory buffers, which can improve the performance of the storage
engine by reducing the number of flushes to the disk. The read
performance can be improved by higher cache capabilities as it can
keep more data in the cache, reducing the number of disk reads.
However, this often means the files on disk has a larger size which
leads to a larger amount of data movement during compactions.

5 CONCLUSION
LSM-based storage engines perform well for write intensive work-
loads. The implementation and configuration of the memory buffers
has critical implications on the performance of a storage engine. In
this paper, we benchmark the performance of LSM-based storage
engines with different memory buffer implementations and under
different workload characteristics. We point out that an appropri-
ate workload-aware choice and tuning of the memory buffer can
improve the overall performance of the LSM-based storage engines
by several orders of magnitude.
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