
© 2019, IJCSE All Rights Reserved 1828

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

Fault Modelling of an Object-Oriented System using CPN

Shubham Kaushik
1
, Ratneshwer

2*

1
University Institute of Engineering & Technology, M.D. University, Rohtak, India

2
SC&SS, Jawaharlal Nehru University, New Delhi, India

Corresponding Author: ratnesh@main.jnu.ac.in

DOI: https://doi.org/10.26438/ijcse/v7i5.18281845 | Available online at: www.ijcseonline.org

Accepted: 26/May/2019, Published: 31/May/2019

Abstract—Object-oriented development is a mechanism in which objects provide services to other objects by various means

like inheritance, polymorphism, etc. Faults, in object-oriented software, may occur at two levels i.e. object level and interaction

level (when one object provides/receives some services from others). A formal representation, of an object-oriented system,

may be helpful to understand the behavior of software faults. Faults identification, at earlier stages, may help during the

development and testing stages. In this paper, an attempt has been made to model several faults, in an object-oriented system,

with the help of Colored Petri Nets. First, a formal representation of object-oriented properties is depicted by Colored Petri

Nets. Secondly, various possible faults are modeled using different programming scenarios. The main emphasis was on faults

that may arise due to objects and their interactions i.e. inheritance and polymorphism state. Such information may be useful

during the testing and maintenance phases of software development.

Keywords—Object, Faults, Colored Petri Nets, Inheritance, Polymorphism

I. INTRODUCTION

Object-oriented software development is a popular approach

by having the property of developing software with the help

of objects. This modular way of development enhances the

quality of the system and promotes the re-usability of objects

across the systems. Objects, in an Object-Oriented System

(OOS), may provide/receive services by several means like

inheritance, polymorphism, etc. The quality of an OOS

depends on the quality of an individual object and how

effectively one object interacts with other objects. The

behavioral analysis of objects and their interactions may be

helpful in fault identification. A fault is an abnormal activity

that if not handled properly may lead to failure of the system.

Faults may occur due to design flaw or programmer‟s

mistake. If a failure occurs then the system may not be able to

achieve its intended functionality. If faults may be diagnosed

at an early stage and proper repair mechanism have been

taken, then the quality of the system will enhance. The main

intention of testing is to spot faults and failures that occurred

in development and to guarantee that software is bug-free [1].

Automated software testing‟s the finest way to increase the

effectiveness, efficiency and coverage of software testing [2].

There are several approaches available for modeling faults in

an OOS. Many approaches are related to the prediction of

faulty objects using object-oriented metrics ([3], [4], [5]).

Several approaches are based on coupling and cohesion

studies of OOS ([3], [6], [7]). There are some studies using

Petri Nets ([8], [9]) but only a few studies are available

related to fault modeling of OOS using Petri nets. Most of the

researchers have emphasized on the modeling of dependency

analysis (using cohesion/coupling) and fault prediction using

OOS metrics rather than how faults can be diagnosed in the

OOS. Our approach contributes to the modeling of fault

analysis of OOS in case of a faulty situation. We have

modeled different scenarios of fault diagnosis approaches.

Petri Net (PN) is a basic modeling tool for parallel and

distributed systems. It was originated from Carl Adam Petri‟s

dissertation in 1962 for the purpose of describing chemical

processes [10]. Nowadays, Petri Net is grasping the

popularity in modeling the concurrent, parallel and dynamic

systems. A normal Petri Net would not be able to model in

different cases like while a node only holds the same kind of

items or tokens. The time-related dependency of the system

also cannot be shown by simple Petri Net. Thus, there are

many extensions of Petri Nets are created such as Colored

Petri Nets [11], Timed Petri Nets [12], Stochastic Petri Nets

[13], Labeled Petri Nets [10], state-charts [14], hierarchical

state machines [15], etc.

In this paper, we adopt Colored Petri-Nets (CPN) to model

the faults in OOS. Inheritance and polymorphism are two

important property of an OOS. Objects that are involved in

inheritance and polymorphism are more error-prone. Mainly

inheritance and polymorphism related faults, along with their

sub-types, are covered under discussion. Different

programming scenarios have been taken to demonstrate

various fault in OOS. Different OOS properties are used for

fault modeling. This approach enhances the understanding of

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1829

faults in the aspect of OOS and will be helpful in the

proposition of newer fault recovery mechanisms.

The rest of paper is organized as follows: Section 2 briefly

point out the work related to fault modeling of OOS. Section

3 introduces the CPN representations of OOP‟s concepts.

Some faults are described in Section 4 which may occur

commonly during the use of OOP‟s concepts. Section 5

contains the fault modeling of OOS using CPN. Section 6

Conclude the work.

II. RELATED WORK

In this section, some related work in the field of fault

handling of OOS is discussed. The importance of Colored

Petri Nets (CPN) as modeling tool has been recognized by

many researchers. Extensions on Petri Nets to fault modeling

of OOS are observed to be an important approach. Some

properties of Petri nets like its graphical ability and formal

representation of the system make it applicable to the

researchers and professionals.

Some relevant contributions are as follows Marcus,

Poshyvanyk and Forence [3] proposed a new measure for the

cohesion of classes in OO software systems based on the

analysis of the unstructured information embedded in the

source code, such as comments and identifiers. A large case

study on three open source software systems is presented

which compares the new measure with an extensive set of

existing metrics and uses them to construct models that

predict software faults. Rajkumar, Viji and Duraisamy [16]

performed a survey of various fault prediction techniques and

measuring quality parameters object-oriented systems. Their

survey includes traditional techniques like Fault tree analysis,

Information theoretic approach, coupling & cohesion

measurement, and conceptual cohesion and coupling. Offutt

[17] presented a model for the appearance and realization of

object-oriented faults and discussed specific categories of

inheritance and polymorphic faults. As per the authors, the

model and categories can be used to support empirical

investigations of object-oriented testing techniques, to inspire

further research into object-oriented testing and analysis, and

to help improve design and development of object-oriented

software. Buzato, Rubira and Lisboa [18] proposed a new

object-oriented reflective software architecture for developing

fault-tolerant applications using meta-level programming.

Their reflective architecture is composed of three levels and

is based on the abstraction of object groups. Aggarwal et al

[19] have empirically explored the relationship between

object-oriented design metrics and fault-proneness of object-

oriented system classes. Their study used data collected from

Java applications is containing 136 classes. They have used a

set of twenty-six design metrics in their work. Result of their

study shows that many metrics are based on comparable ideas

and provide redundant information. Our approach presents

the OOS faults and their modeling using CPN. Researchers

and practitioners can get the conceptual view of inheritance

and polymorphism related faults. Some features are also

extracted to demonstrate the faulty situation in OOS. We

extended the above contributions further by presenting a CPN

based fault diagnosis method for OOS.

III. CPN REPRESENTATION OF OOP’S CONCEPT

Formal representation provides the behavioral aspects of

modules. In this section, the representation of OOP‟s

concepts is shown with Colored Petri Nets. The CPN tools

are used to represent the OOP‟s concept. In CPN

representation, places, transitions and arcs components like

set-subpage, input-port, output-port, succession-constraint,

fusion-sets are used to represent the OOP‟s concept.

In the following subsections, CPN representation of several

of OOP‟s concepts is shown below.

5.1 CLASS VARIABLES AND METHODS

A class is a user-defined blueprint or prototype from which

objects are created. It represents the set of properties or

methods that are common to all objects of one type [20]. In

CPN tool the „places‟, „transitions‟ with „arcs‟ between them

are used to represent a full class (which have variables and

methods). The object is a basic unit of Object Oriented

Programming and represents the real-life entities [20]. The

Object is represented by the upper inscription of a place as

shown below. A simple class can be represented by a single

place. Figure 3-1 depicts the general representation of simple

class representation.

Figure 3III-1 general CPN representation of the simple class

The upper inscription of place depends on the lower

inscription of it. The lower inscription is the name of the

color set which can be defined using „colset‟ keyword of

CPN. Color set is the full form of „colset‟ keyword. Color set

defines the type of tokens a place can hold. To hold multiple

types of tokens „product‟ keyword is used in „colset‟

declaration as shown below.

colset STRING = string; //simple color set declaration

colset NAME_OF_COLSET = product datatype 1 * datatype

2 *……*datatype n; //product colset

The CPN representation may vary from program to program.

The class of java program which does not have any method in

it can be represented by only one place and its inscription but

the class of java program which have methods into it can be

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1830

represented with multiple places and transitions. This may be

observed in another concept of OOP like inheritance and

Polymorphism.

5.2 INHERITANCE

Inheritance is an important part of OOP‟s in which the object

of child class can obtain all the properties and behavior of

parent class. In Java, the „„extends‟‟ keyword is used to

inherit the properties and behavior of parent class into child

class. In CPN „input/output ports‟ and the „set-subpage‟ tool,

are used to represent the Inheritance property. In Java

inheritance is of three types. The CPN representations of

different types of inheritance are given below.

3.2.1 SINGLE INHERITANCE

It is a type of inheritance in which a single „class A‟ inherits

another single „class B‟, it means a class can inherit the

properties of another class which must be the superclass. In

CPN a couple of „pages‟ are used to represent the single

inheritance. On every page, a single class can be represented

by its variables and methods. As all Java Applications begins

execution by CALLING „main ()‟ function [21]. The general

representation of Single inheritance is shown in Figure 3-2

where two classes class A and class B are shown and class B

„extends‟ class A using „set-subpage‟ tool of Hierarchy

Palette of CPN. On another page class A is represented with

input and output ports which means the input on this class

came from input port place and the output will go through the

output port place.

Figure 3-2 general CPN representation of Single inheritance

This representation is used in every type of inheritance

representation. The concept behind setting the subpage for

the inherited class is that when the main class creates an

object for child class then internally the parent class is called

first by the child class and also the default constructor of

parent class executes first before the child class constructor

execution. If the programmer does not create a constructor in

parent class the JVM (java virtual machine) itself creates an

empty default constructor and executes it.

An example of a java program for single inheritance is taken

below.

The CPN representation, for the above program of single

inheritance, consists of three pages with one class on every

page. The set subpage tool is used to connect these pages.

The place which represents the main class contains the tokens

of main class instant variables and objects.

The CPN representation of main class „TestInheritance‟ has

two String type tokens one is “d” and another is an empty

token. The token “d” is the object of Dog class which is

created in the main class „TestInheritance‟. It also represents

two methods which are represented with the help of

transitions as shown. The methods which are called from the

main class are represented by transitions „(bark() and eat())‟

and the arcs are connected to „call Dog‟ transition which

transfers the tokens to another class. The classes on another

page are set with input and output ports, where the input port

is used to input the tokens from another page and output port

is used to transfer the tokens from the current page to another

page. The colset declaration for a place of output port must

be same as the input port otherwise CPN will throw an error

for type mismatch. Below is the CPN representation of main

class TestIheritance.

Figure 3-3 class TestInheritance CPN representation of example java

program for single inheritance

CLASS B extends CLASS A CLASS A

Example: Java Program of Single Inheritance [22]

Output:barking… Eating…

class Animal{
void eat(){ System.out.println("eating..."); } }
class Dog extends Animal{
void bark(){ System.out.println("barking..."); } }
class TestInheritance{
 public static void main(String args[]){
 Dog d=new Dog(); d.bark();
 d.eat(); } }

class TestInheritance{
public static void main(String args[]){
Dog d = new Dog();
d.bark();
d.eat();
 }}

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1831

Now, other classes are represented on other pages. The Dog

class is the child class which is represented by a unit colset as

there are no instant data variables in the Dog class. The

bark() method of Dog class is also defined on this page with

the help of extra place and transitions. It also „„extends‟‟

Animal class which is designed on another page and

represented by the inscribed transition. The CPN

representation of the Dog class is shown in Figure 3-4.

Figure 3-4 CPN representation of class Dog of example for Single

inheritance

When the object of Dog class is created inside the main class

TestInheritance, the Dog class is loaded by the JVM so in

CPN representation the object token “d” is fired on the main

class first, after this using that object token main class calls

the method of Dog class and its parent class. The CPN

representation of parent class Animal is shown in below

Figure.

Figure 3-5 CPN representation of Animal class which is the superclass of

Single inheritance example

When Dog class object has created this class also loads

automatically because of the inheritance. The eat() method is

also represented in Animal class using place and transition.

There is no inscribed transition in the Animal class which

means it does not inherit any class. When the bark() method

executes it statements the transition of eating () method

becomes active. The outputs are fired on another place named

as out through output transition.

3.2.2 MULTILEVEL INHERITANCE

When a class „„extends‟‟ a class, which „„extends‟‟ another

class then this is called multilevel inheritance [23]. So one

class inherit a class which already „„extends‟‟ some another

class. In Java one class never inherit multiple classes as

multiple inheritances are not allowed. A level by level

inheritance of multiple classes is known as multilevel

inheritance. In CPN the multilevel inheritance is represented

by using multiple subpages as used in single inheritance and

connect them with the help of hierarchy palette tools „set

subpage‟ and input and output ports. It is just extending the

single inheritance representation by using multiple subpages

with the same concept of single-level inheritance. The

general CPN representation of Multilevel Inheritance is

shown in Figure 3-6.

Figure 3-6 general CPN representation of multilevel inheritance

Here we have three classes in which class C is the superclass

and also the parent class of class B. The next level contains

class B which is the superclass for class A and also the

parent class of class A. An example of Multilevel Inheritance

is taken in which three classes class Car, class Maruti, and

class Maruti800 are defined. The class Car is the superclass

and its child class is class Maruti which is the parent class of

class Maruti800.

class Dog extends Animal{
void bark(){
System.out.println("barking...");
}}

class Animal{
void eat(){
System.out.println("eating...");
}}

CLASS A extends
CLASS B

CLASS B extends
CLASS C

CLASS C

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1832

The CPN representation of this program consists of three

pages as we have three classes. The CPN representation of

class Maruti800 is shown below.

Figure 3-7 CPN representation of class Maruti800 of Multilevel Inheritance

The Maruti800 class has one token for object „obj‟ at place

Maruti800. The constructor for this class is also represented

with the extra place and transition. As the constructor of

child class always executes after the execution of parent class

constructor so the token initially fired to another page of

class Maruti which is the parent class of class Maruti800.

The CPN representation of Maruti class is shown in Figure 3-

8 Maruti class representation.

Figure 3-8 CPN representation of Maruti class of Multilevel Inheritance

Maruti class has no variable and object declaration in so we

the unit (empty) token at Maruti place. The constructor for

this class is also represented by extra place and transition.

Now Maruti class „extends‟ class Car so Maruti class make

an internal call to its parent class and class Car default

constructor will execute first, so the representation of class

Car is shown in Figure 3-9 (CPN representation of Car

class).

Figure 3-9 CPN representation of class Car of Multilevel Inheritance

The Car class is also represented with the unit token as there

is no variables or objects declared in this class and the

constructor is represented by place and transition. Now when

Maruti800 class creates an object „obj‟ as a token it will

automatically make a call to its parent class. When class

Maruti is called it makes a call to its parent class i.e. class

Car. Also, there is no inscribed transition on the page of

class Car its means there is no more inheritance from class

Car, so now the default constructor starts invoking one by

one from parent class to child class. When the tokens are

Example: Program of Multilevel Inheritance [23]

Output: Class Car Class Maruti Maruti Model : 800

class Car{
 public Car(){
System.out.println("Class Car");
 }
}
class Maruti extends Car{
 public Maruti(){
System.out.println("Class Maruti");
 }
}
public class Maruti800 extends Maruti{
 public Maruti800(){
System.out.println("Maruti Model: 800");
 }
 public static void main(String args[]){
 Maruti800 obj=new Maruti800();
 }
}

public class Maruti800 extends Maruti{
public Maruti800(){
System.out.println("Maruti Model: 800"); }
public static void main(String args[]){
Maruti800 obj=new Maruti800();

}}

class Maruti extends Car{
public Maruti(){
 System.out.println("Class Maruti"); }}

class Car{public Car(){
System.out.println("Class Car");
}}

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1833

received by class Maruti800 the default constructor of this

class will execute its print statement and the output will be

“Class Car”, “Class Maruti” & “Maruti Model: 800”.

3.2.3 HIERARCHICAL INHERITANCE

When more than one classes inherit the same class then this

is called hierarchical inheritance [23]. This is a type of

inheritance in which same class is inherited by more than one

class and forms a hierarchy. In CPN the same concept of

single inheritance is used to model the hierarchical

inheritance i.e. using „set subpage‟ tool and input, output

ports of the hierarchical palette. In CPN one page is

connected to the multiple pages for hierarchical inheritance

as shown in Figure 3-10 general representation of

hierarchical inheritance.

Figure 3-10 general representation of hierarchical inheritance through CPN

Here we have four classes in which one is the superclass of

another three classes. The three classes „class B‟, „class C‟

and „class D‟ „extends‟ the „class A‟. So class A is the

superclass and class B, class C, and class D is the child

classes of class A. Every child class has inscribed transition

into it which shows inheritance with class A. The superclass

is inherited to multiple pages using „set subpage‟ tool and

CPN make multiple copies of superclass to connect them

with every child class of it. An example of Hierarchical

Inheritance is shown below.

The above program consists of five classes in which the main

class is named as class „HierarchicalInheritanceTest‟. The

superclass is class A which is inherited by the other four

classes, so the child classes are class B, class C and class D.

Every class contain its default constructor in its CPN

representation. The objects for every child class are created in

main class „HierarchicalInheritanceTest‟ as are shown in

Figure 3-11. The class „HierarchicalInheritanceTest‟ is

represented by a place which Carries three tokens “objB”,

“objC” and “objD”. These are the objects of child classes

class B, class C, and class D respectively. In CPN

representation the inscribed transitions are used to call or

load classes when the object of that particular class is made.

Figure 3-11 CPN representation of class „HierarchicalInheritanceTest‟

When the tokens are fired from the main class

„HierarchicalInheritanceTest‟ and received by the child

classes, they start executing their statements. The child

classes also extend superclass A so the tokens are transferred

to the superclass first. The superclass contains one default

constructor which prints “disp() method of class A” after

which the child class executes its constructor which prints

“disp() method of (child class name which calls the class

A)”. The superclass will run every time the new object is

created by the main class. The CPN representation of a

superclass is shown below in Figure 3-12 in which the place

Hierarchical Inheritance is the input port which fire tokens.

When the connection between two pages is formed through

set-subpage tool the extra places are to be made on the

subpages to abate this we can use fusions in CPN tool.

Example: Program of Hierarchical Inheritance [23]

Output: disp() method of ClassAdisp() method of ClassB disp()
method of ClassA disp() method of ClassC disp() method of
ClassA disp() method of ClassD

class ClassA {
public ClassA(){
 System.out.println("disp() method of ClassA");}}
class ClassB extends ClassA {
public ClassB(){
 System.out.println("disp() method of ClassB");}}
class ClassC extends ClassA{
public ClassC(){
 System.out.println("disp() method of ClassC");}}
class ClassD extends ClassA{
public ClassD(){
 System.out.println("disp() method of ClassD");}}
public class HierarchicalInheritanceTest {
public static void main(String args[]){
 ClassB objB = new ClassB();
 ClassC objC = new ClassC();
 ClassD objD = new ClassD();}}

public class HierarchicalInheritanceTest {
public static void main(String args[]) {

ClassB objB = new ClassB();
ClassC objC = new ClassC();
ClassD objD = new ClassD(); } }

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1834

Figure 3-12 CPN representation of class A of Hierarchical Inheritance

program

When the tokens are fired from the superclass they are

received by the child classes subpages. The CPN

representation of class B which also „extends‟ class A which

is represented by the inscribed transition is shown in Figure

3-13 as shown below.

Figure 3-13 CPN representation of class B of Hierarchical Inheritance

program

The constructor for every class is represented by extra place

and transition which will only execute after the execution of

parent class A constructor. Similarly, the representation for

class C is shown in Figure 3-14.

Figure 3-14 CPN representation of class C of Hierarchical Inheritance

program

The CPN representation of class D is shown in Figure 3-15.

Figure 3-15 CPN representation of class D of Hierarchical Inheritance

program

Initially, the object of class B is created so the token of class

B “objB” is fired on the subpage of class B, after which the

internal call for parent class is made through class B and

class A is called. When class A is called the default

constructor of class A runs automatically which fire token

“disp() method of class A” after this the default constructor

of class B executes and print “disp() method of class B”.

After the object of class B, the object of class C is created so

same process of execution of constructors and classes is

class ClassA {
public ClassA(){

System.out.println("disp() method of ClassA");
}}

CLASS A

CLASS B

class ClassB extends ClassA {
public ClassB() {

System.out.println("disp() method of ClassB");
}}

CLASS C

class ClassC extends ClassA{
public ClassC() {

System.out.println("disp() method of ClassC");
}}

CLASS D

class ClassD extends ClassA{public ClassD() {
System.out.println("disp() method of ClassD");
}}

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1835

followed by class C and class D and the output tokens will be

fired on the main class „HierarchicalInheritancTest‟.

5.3 POLYMORPHISM

Polymorphism in Java is a concept by which we can perform

a single action in different ways. Polymorphism is derived

from 2 Greek words: poly and morphs. The word "poly"

means many and "morphs" means forms. So Polymorphism

means many forms [24]. The CPN Polymorphism can be

represented by using Inheritance concept and defining the

same method on multiple pages which are connected with the

help of set subpage tool. The method overriding is performed

by using let expressions which change the existed value of

any variable or method. Here the fusion concept of CPN tool

is also used for sharing tokens from one page to another.

The syntax of let expression is as follows:

let

 val //value of variable

in

 //expression

end

The CPN representation of Polymorphism property is given

in Figure 3-16.

Figure 3-16 showing method overriding of „method_1()‟ when one class

inherit another

In Polymorphism representation of CPN, there is one

assumption that the values used by the overridden method

should not initialize with zero. The zero value is used to run

the parent class method and if the value is not zero the

overridden method will execute. The above CPN is the design

of two classes class A and class B where the class B is the

parent class of class A. The method „method_1()‟ is defined

in parent class B which is further overridden by redefining in

child class A. In parent class „method_1()‟ the Square of

integer value is performed and in the overridden „method_1()‟

the subtraction is performed.

The call „method_1()‟ transition remain inactive as the

program runs the overridden method instead of parent class

method „method_1()‟.The integer value provided to the

program is „2‟ and the output value of the program is „0‟.

IV. FAULTS IN OBJECT-ORIENTED

PROGRAMMING

In this section, some common faults in OOS and their

possible effects are discussed. In programming, a fault is an

incorrect statement or a group of incorrect statements in the

program which terminates the program abnormally or it may

also cause a failure of the program. In computing and

operating systems, a trap, also known as an exception or a

fault, is typically a type of synchronous interrupt typically

caused by an exceptional condition (e.g., breakpoint, division

by zero, invalid memory access)[25]. A fault or failure may

be observed in multiple steps, the initial condition is when the

defective statement is reachable by the program then only it

can be observed, second if after the execution of that

defective statements the program enters into abnormal

behavior or stops working then it can be observed. If after the

execution of defective statements program gives correct

output then the fault cannot be observed, so it must provide

wrong output after the execution of defective statements. A

defective program may run and execute successfully without

entering into abnormal behavior but it may also produce data

anomaly which is also a type of fault. In case of a data

anomaly system will not be affected many times but in case

of the real-time operating system, a data anomaly may also

create a problem. Software faults are most often caused by

design faults. Design faults occur when a designer, (in this

case a programmer,) either misunderstands a specification or

simply makes a mistake [26]. If some data anomaly or fault

occur then the programmer needs to backtrack/review the full

program for which much time is required.

Faults in OOP are of several kinds, many of them are

dependent upon OOP‟s concepts like inheritance related

faults (e.g. Improper declaration of parameters, Access

violation, etc.) or Polymorphism related faults. Most of the

faults are data related faults in which the variables, methods,

and constructor are not well defined or initialized by the

programmer. Some faults are standard faults which can be

examined by the compiler at the compilation time like

Variable Access Violation related faults, uninitialized

class/package or methods CALLING, trying to achieve

circularity inheritance or CALLING the child class method in

the parent class. Many of these faults are discussed in section

5.

CLASS B

CLASS A

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1836

Most of these faults are producing data anomaly because of

the improper declaration of method or constructor by the

programmer. Also, there are some faults which occur due to

Variable Access Violation.

A summarization of the OOP faults is shown below in this

chart.

Figure 4.1: Summarization of OOS faults

The order of method CALLING also matters in many cases

for example if someone is trying to call a method of child

class inside the parent class of that child class then this will

throw an error which is also not possible in CPN. In the case

of Polymorphism, there are some faults related to method

overriding which are also discussed below with an example.

The fault in case of Polymorphism can occur when the

overridden method is not defined properly or maybe some

value is missing and declared with another variable.

V. DEMONSTRATION OF OOP’S FAULTS

THROUGH CPN

In this section, the faults in OOP are demonstrated through

CPN. The CPN representations are based on section 3

(representations of OOP concepts). Most of the faults may be

observed during the development of the CPN model.

Demonstration of several OOP faults is given as follows.

5.4 INHERITANCE FAULTS

The inheritance is the most important concept of OOP which

helps for code re-usability. Unfortunately, it also allows some

data anomalies and faults which either produce wrong output

or forcefully to push the system into abnormal behavior.

There are several faults discussed related to inheritance

below.

5.5 IMPROPER DECLARATION OF PARAMETERS

The improper declaration of parameters (IMDP) will

produce a data anomaly without any abnormal termination or

failure of the system software program. The improper

declaration of variables or parameter can be done either in the

constructor of class or by the method of the class. The

improper declaration in the constructor will affect the

program when that constructor is used to set the values and

those values are further used by another constructor or

method in the program. As if the constructor defined is the

default constructor then it will run on every object creation

and affect the program. The improper declaration in the

method can also affect the program in the same way as the

constructor is affecting. This is rarely possible in the single

class declaration so this is shown by using the inheritance

concept.

The example of java program for an improper declaration of

the constructor is given below in which main class is defined

as IMDP (improper declaration of parameters) and other two

classes child and parent class are defined with the name

„Child‟ and „Parent‟ respectively. The main class consists of

two integer variables „periofsq (perimeter of the square)‟ &

„perioftri (perimeter of the triangle)‟ and one object “ch” of

the child class is created. The „Parent‟ and „Child‟ contain

parameterized constructors which are used to set the values

of variables.

Conditional
Statements

Polymorphism
Related

Method order
Violation

Improper
declaration

ofparameters

Class Unavailability
Error

Faults

Constructor

Method

Private

Protected

Method
Overriding

Fault

Invalid Value of
Variable

Missing
Variable

Loop
Statements

IF ELSE

Switch case
Statements

FOR LOOP

WHILE LOOP

DO WHILE
LOOP

Miscellaneous

Inheritance
Related

Variable Access
Violation

Example: Java program with improper declaration of parameters
using Inheritance.
Output: Perimeter of Rectangle = 18 // (incorrect)

 the correct is 22 Perimeter of triangle = 14
class Parent {
int x,y;
Parent(int l, int b){
x = b;
y = l;}}
class Child extends Parent {
int z;
Child(int l, int b, int h){
super(l,b);
z = h;}
public int perimeterOfTri(){
return (x+y+z);}
public int perimeterOfSq(){
return 2(y+z);}}
class IMDP{
public static void main(String args[]){
 int periofsq, perioftri;
 Child ch = new Child(3,5,6);
 periofsq = ch.perimeterOfSq();
 perioftri = ch.perimeterOfTri();
 System.out.println("Perimeter of Rectangle = "+periofsq);
 System.out.println("Perimeter of triangle = "+perioftri); }}

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1837

The main class IMDP declare two variables „periofsq‟ and

„perioftri‟. It also creates a Child class object „ch‟ and makes

a call for the parameterized constructor of that class by

passing three values 3, 5 and 6. The CPN representation of

the above program is shown below

Figure 5-1 CPN representation Main class of Java program with (IMDP)

using inheritance

The CPN representation of „Parent‟ class is shown below

which contain two integer variables x and y which are

initialized with zero value and also contain parameterized

constructor which set the values of variable x and y.

Figure 5-2 CPN representation of „Parent‟ class of Java program IMDP

The CPN representation of „Child‟ class is shown below

which consist of one integer variable z (Z is also initialized to

zero) and a parameterized constructor which explicitly call

the parameterized constructor of Parent class using „super()‟

keyword. The call of super() must be in the first line of java

program so in CPN also the place which represents the

superclass is next to the input port. Only after the execution

of super(), the next transition will be active on the page of the

„Child‟ class. The „Child‟ class is represented as shown in

Figure 5-3.

Figure 5-3 CPN representation of „Child‟ class of Java program IMDP

When the object token is fired with parameters from the main

class IMDP it will be received by the „Child‟ class and the

parameterized constructor of „Child‟ class starts execution.

The call of super() is made first which fire tokens to the

parameterized constructor of „Parent‟ class as shown in

Figure 5-4.

Figure 5-4 firing of tokens from the main class to Child in the IMDP

program

class IMDP{
public static void main(String args[]){

int periofsq, perioftri;
Child ch = new Child(3,5,6);
 periofsq = ch.perimeterOfSq();
perioftri = ch.perimeterOfTri();
 System.out.println("Perimeter of
Rectangle="+periofsq+"sqr meter");
System.out.println("Perimeter of triangle="+perioftri+"sqr
meter"); }}

class Parent {
int x,y; Parent(int l, int b){
x = b; y = l; }}

class Child extends Parent {
int z;
Child(int l, int b, int h) {super(l,b); z = h;}
public int perimtrOfTri() { return (x+y+z);}
public int perimtrOfSq() {return (y+z); }}

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1838

Fault in the IMDP program is also observed during the

development of the CPN model or after running the CPN

model. The input given to the IDMP program is the three

sides in which two of them are the sides of the rectangle

which are also equal to the two sides of the triangle.

Figure 5-5 Fault in IMDP observed through CPN

The output of the program is the perimeter of the Rectangle

and perimeter of Triangle which are 18 and 14 respectively.

In which the perimeter of the Rectangle is wrong because of

values swapping in „Parent‟ class constructor. The token

fired from the „Child‟ class is 1` (3, 5) when the super is

called but after setting the values of x and y, the token fired

have values 1` (5, 3) which can be easily observed that there

is some fault in the „Parent‟ class. Here the values are

swapped in „Parent‟ class constructor.

The right answer for the perimeter of a Rectangle is 22 which

can be calculated as 2(6+5) but the program is calculating

2(3+6) which is equal to 14. So, this is the improper

declaration of parameters (IMDP) in the „Parent‟ class

constructor which can be observed through CPN and also

figured out easily in the program.

5.6 VARIABLE ACCESS VIOLATION

Variable Access Violation (VAV) is the standard fault which

can also catch by the compiler. In Java, Access specifiers are

used to specifying the accessibility (scope) of data members,

methods, constructor or class. The access specifiers help in

controlling unwanted or unnecessary access. There are four

types of Java access specifiers. The most restricted access

specifier is Private by which the private members, methods

or constructors are not accessible outside the block in which

they are defined. The Private class is not accessible outside

the package. The most non-restricted access specifier is

Public in which Public members, methods, constructors or

classes are accessible anywhere in the project. When the CPN

model of a program is made there will be an error for Private

member or methods.

A general CPN example for Variable Access Violation is

taken for showing an error.

Figure 5-6 CPN representation of Parent class B Of java program for VAV

The class B consist of two integer variables „i‟ & „j‟ from

which „i‟ is public data member and „j‟ is private data

member. Only public tokens are fired through transition T2

so that the private data member „j‟ is not available outside the

class B. Now, when a private data member is called outside

class B CPN throw an error which says that only one integer

value is available and the call is made for two integer values.

The child class is shown below in Figure 5-7. CPN

representation of child class B of parent class A with an error

popup.

Figure 5-7 CPN representation of child class A for java program of VAV

The output port of class B is sending tokens to place B so

value available at place B is of only „i‟ variable so the popup

is shown for the extra value called by the arc connecting

through place B to transition T3.

5.7 METHOD ORDER VIOLATION

Method Order Violation (MOV) is the fault occur when the

child class method is called from its parent class. This can

also catch by the compiler at compile time and in CPN if this

kind of method call is performed then CPN will raise an error

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1839

of circularity. As the set-subpage tool is used for inheritance

so to make a call for a method defined on another page the

connection between those pages is required which makes a

circularity, for example, let us assume the method defined in

the child class is Child:: M(). In CPN the child class is

connected to the parent class with the help of inscribed

transition on the child class page and there is no inscribed

transition in the parent class which shows the parent class is

the super() class of the program. For calling the method of

the child class, parent class needs to connect that transition

with the child class page which is not possible and throws a

circularity error. This can also be observed with an example

of a java program which performs method order violation as

given below.

The program consists of one main class named as

StudentIISD and two classes from which one is parent class

named as StudentDetails and another is child class named as

StudentSchool. So the main class StudentIISD creates an

object “obj” of child class StudentSchool and used for

method calling for child class and parent class. The parent

class consists of two integer variables „age‟ & „ID‟ and one

string variable „school‟ which is set with the string value

“RVS”. Some setter methods and one display method are also

defined. The child class StudentSchool consist of one

StudentSchool() method to reset the value of „school‟ before

displaying with the display method.

The CPN representation of the above program is given below.

Figure 5-8 gives the CPN representation of main class StudentIISD

The place A in Figure 5-8 helps in calling different methods

of child and parent class and transfer the parameterized call

with the help of tokens, so initially the place A is initialized

with the null values to activate the transitions. The CPN

representation of child class StudentSchool is shown below.

Figure 5-9 Gives the CPN representation of child class StudentSchool

Example: Java program with method order violation using
Inheritance.
Output: error: cannot find symbol
school = StudentSchool();
symbol: method StudentSchool()
location: class StudentDetails
class StudentDetails {
int age,ID;String school = "RVS";
public int studentage(int a){
age = a;return age;}
public int studentID(int b){
ID = b;return ID;}
public void display(){
school = StudentSchool();
System.out.println(age+" "+ID+" "+school); }}
class StudentSchool extends StudentDetails{
public void StudentSchool(){
school = "Ridhikul Vidyapeeth Sonipat"; }}
class StudentIISD {
public static void main(String args[]){
StudentSchool obj = new StudentSchool();
obj.studentage(20);
 obj.studentID(1001);obj.display();
 }}

class StudentIISD {
public static void main(String args[]){
StudentSchool obj = new StudentSchool(); obj.studentage(20);
obj.studentID(1001);
obj.display(); }}

class StudentSchool extends StudentDetails {
public void StudentSchool() {
school = "Ridhikul Vidyapeeth Sonipat";
 }
}

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1840

The child class contains only one method StudentSchool()

which set the value of variable school (of string type). The

parent class consists of two integer variables ID & age and

one string variable school. The variable school is initialized

with “RVS”. Some setter methods are also defined to set the

values of ID & age. The CPN representation for parent class

is given in Figure 5-10.

Figure 5-10 Given CPN representation of parent class StudentDetails

In this program, the programmer wants to change the value of

the school variable and to change the value of school variable

the StudentSchool() method must be called which is defined

in the child class. The calling of child class method from

parent class is not possible in Java and also not possible in

CPN so CPN throws a circularity error as shown in Figure 5-

11.

Circularity error is thrown while setting subpage form

transition „call StudentSchool()‟ of the parent class to child

class page.

Figure 5-11 Gives the error representation when the set-subpage tool is

applied on transition call StudentSchool()

So Method Order Violation can occur when someone calls

the method defined in child class through parent class and for

this kind of error CPN throws a circularity error.

5.8 CLASS UNAVAILABILITY ERROR

This kind of Error will occur when the call for the

unavailable class is made. This is also caught by the compiler

when compiling that program. In a java program, the

programmer will „extends‟ a class that is not available yet, so

the compiler will throw an error at compile time checking.

The example of this kind of fault is shown below.

In the above example, the class Earth „extends‟ class

Universe and the Universe class is uninitialized so Universe

class is not found is the error thrown by the compiler. In CPN

the pages are used to define a class so here a page for

Universe class is defined but the defined page is empty which

can be thought as the class is not defined so the error for class

unavailability will be thrown as shown below.

class StudentDetails {
int age,ID;
String school = "RVS";
public int studentage(int a){
age = a;
return age; }
public int studentID(int b){
ID = b;
return ID;
}
public void display(){
school = StudentSchool();
System.out.println(age+" "+ID+" "+school);
 }
}

Example: Java program with Class Unavailability Error using
Inheritance.
Output: error: cannot find symbol
class Earth extends Universe {
symbol: class Universe 1 error

class Earth extends Universe {
public static void main (String args[]){
Earth e = new Earth();
System.out.println("Yes!!! I kno everything");
}
}

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1841

Figure 5-12 Representation of class Unavailability error

raised in CPN

The above CPN representation is of class Earth which is

extending the class Universe. The page which is assigned for

the class Universe is empty. This means the Universe class is

not defined hence the error occurred. The places which are

connected to the inscribed transition are not able to throw

and receive the tokens from the extended class. The error is

the „place connected to the substitution transition is not

assigned to the port on the class Universe‟ which means the

input and output ports are not assigned on the class Universe

page.

The CPN representation of Universe class does not contain

anything.

5.9 POLYMORPHISM FAULTS

Polymorphism is one of the OOPs features that allow us to

perform a single action in different ways [27]. Unfortunately,

it also allows some data anomalies and faults which either

produce wrong output or forcefully to push the system into

abnormal behavior. There are several faults related to

Polymorphism, one of the fault is discussed below.

5.10 METHOD OVERRIDING FAULT (INVALID

VARIABLE OR VALUE)

Method overriding is a run-time Polymorphism. It is also

known as dynamic Polymorphism. There are some data

anomalies which occur due to variable missing or an invalid

value is given in the overridden method. In this kind of data

anomaly, the output of the program will be wrong. The

scenario here is supposed there are two classes in which one

is parent class and another is child class. The data anomaly

will occur here when the child class redefines a method of the

parent class in an inconsistent way. The inconsistent

declaration could be the variables defined by the parent class

method are not redefined by the child class method. The child

class method defines its local variables. Also, there are some

methods which were using the values defined by the parent

class method and now they use the values defined by the

overridden method of child class which will produce data

anomaly. There is one more scenario in which the program

will throw a data anomaly. In this, the overridden method is

redefining the variables in an inconsistent way which means

the child class method is redefining the variables defined by

the parent class method but the values provided to them are

not correct. The second scenario rarely occurs in the program.

The example of a java program for the first scenario is given

below which is producing data anomaly. In the java program

multilevel inheritance is also used in which three classes are

defined, the main class named as „Extra‟ which „extends‟ the

class „Assing‟. The class „assing‟ „extends‟ the class Marks,

so Marks is the superclass.

Here the program is designed for student marks details for a

science subject. The superclass „Marks‟ defines the theory

marks and practical marks where the assignment marks are

assigned in the Assing class and some extra marks are added

into the main class which overrides the theory marks method

of the superclass and produce a data anomaly. The CPN

representation of main class Extra is given below.

Example: Java program with Method Overriding Faults using
Polymorphism.
Output: Science Theory Marks = 3 // incorrect value Science
assignment Marks = 5 //incorrect

class Marks{
public int science_T,science_P,total;
public int science_Theory(){
science_T = 52;
return science_T;}
public int practical_Marks(){
science_P = 30;
return science_P;}
public int Total(){
total = science_P + science_T;
return total; }}
class Assing extends Marks{
int assin;
public int Total(){
if(science_T>50){assin = 10;}
else if(science_T<50 && science_T>45){assin = 7;}
else{assin = 5;}
return assin; }}
class Extra extends Assing{
int extra_M;
public int science_Theory(){
extra_M = 3;return extra_M;}
public static void main(String[] args) {
Extra e = new Extra();
int science_T = e.science_Theory();
int assin = e.Total();
System.out.println("Science Theory Marks = "+science_T);
System.out.println("Science assignment Marks = "+assin);
 }}

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1842

Figure 5 13 CPN representation of Java program for main class Extra

The above representation of the java program contains one

integer variable „extra‟ and one object „e‟ of class Extra.

Class Extra also „extends‟ class Assing which is represented

by the inscribed transition. The class Extra also contains one

overriding method science_Theory(). The place Call is

assigned with a fusion name as CALLING. The token fired on

this place will show on every page which comes under

CALLING fusion set. The place Output is also assigned with

a fusion name as OUTPUT which contains only output tokens

with it.

Figure 5-14 CPN representation of java program for class Assing

The parent class of main class Extra is class Assing. The

CPN representation of class Assing which consist of one

integer variable „assin‟ and one method total(). The method

total() is connected with the CALLING fusion which fires the

called tokens to the total() method transition and output are

connected with OUTPUT fusion. Now, the parent class of

Assing is class Marks which is shown below.

class Extra extends Assing{
int extra_M;
public int science_Theory(){
extra_M = 3;
return extra_M; }
public static void main(String[]args){
Extra e = new Extra();
int science_T=e.science_Theory();
int assin = e.Total(); System.out.println("Science Theory
Marks = "+science_T); System.out.println("Science
assignment Marks = "+assin); }}

class Assing extends Marks{
int assin; public int Total(){
if(science_T>50){
assin = 10; }
else if(science_T<50 && science_T>45) {
assin = 7;}
else{
assin = 5;}

class Marks{
public int science_T, science_P,total;
public int science_Theory(){
science_T = 52; return science_T;}
public int practical_Marks(){
science_P = 30; return science_P;}
public int Total(){
total = science_P + science_T; return total; }}

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1843

Figure 5-15 CPN representation of java program for superclass Marks

The superclass Marks consist of three integer variables

(science_T, science_P, total) and three methods

science_Theory(), practical_Marks(), Total().

Now, when the token of the object has fired the transition

which overrides the method science_Theory() become active

and the call to science_Theory() remain inactive which is

shown in below Figure 5-16.

Figure 5-16 the overriding method science_Theory() become active and the

call to science_Theory() remain inactive.

When transition science_Theory() fires the token then the

next transition for Total() method become active and the

output place gets „3‟ as output. Total() method is not

overridden by the main class so the call for Total() method is

completed by firing the token to another class. The firing of

the token from one page to another is shown below.

Figure 5-17 Showing the firing of the token from main class Extra to its

parent class Assing

When the token is fired from transition call Total(), the

transition Total() of class Assing become active. After firing

of tokens from transition Total() the output will be 2 tokens

as shown below.

Figure 5-18 output of the example java program

Here the flaw/fault is that the overriding method is defined

inconsistently because of which the correct value of science

theory marks is overridden by the Extra marks. The science

marks are also used to calculate the assignment marks which

again produce data anomaly due to the overridden value of

science theory marks.

5.11 MISCELLANEOUS FAULTS

There are some more common faults other than OOP‟s faults

which are discussed below.

5.12 CONDITIONAL STATEMENTS

Statements that allow us to check a condition and execute

certain parts of code depending on whether the condition is

true or false. Such statements are called conditional

statements. This section describes the CPN representation of

conditional statements. Also, give a brief representation of

errors when the syntax or condition is wrong.

5.13 IF / ELSE STATEMENTS

The if-else statement allows us to select between two

alternatives. The condition in an if-else statement can be an

arbitrary expression of type Boolean. The else part of an if-

else statement is optional [28]. The CPN representation for if

else is shown below.

Figure 5-19 CPN representation of If-else conditional

statements

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1844

In the above Figure, the value of the token is 4 and the IF

condition is satisfied so IF transition becomes active. The

ELSE transition remains inactive. The inscription to the IF

transition checks the condition which helps in activating the

transition. The transition basically has three inscriptions with

it. On hitting „tab key‟ one time the control goes to the

conditional inscription. The syntax for conditional inscription

is shown in the figure. It should be in square brackets. Also, it

must have some relation to the token fired from the input

place of that transition.

5.14 SWITCH CASE STATEMENTS

When there is a multiple-choice selection the several nested

if-else statements are used [28]. The switch statement in java

does the same. As SWITCH CASE is the extension of IF

ELSE, so the IF ELSE representation of CPN is used in the

SWITCH CASE representation. The CPN representation of

SWITCH CASE is shown below.

Figure 5-20 CPN representation of SWITCH CASE

conditional statements

5.3.4 LOOPS REPRESENTATION IN CPN

In this section, the CPN representation of loops like for loop,

while loop and do while loop is discussed, also loops which

formed when the same method is called again and again

(recursion). The representation of all loops is almost the

same.

A while loop is a control flow statement that allows code to

be executed repeatedly based on a given Boolean condition.

The while loop can be thought of as a repeating if statement

[29].

Do While loop is similar to while loop with the only

difference that it checks for the condition after executing the

statements, and therefore it is an example of Exit Control

Loop [29].

For loop provides a concise way of writing the loop structure.

Unlike a while loop, a for statement consumes the

initialization, condition and increment/decrement in one line

thereby providing a shorter, easy to debug structure of

looping [29].

The CPN representation for loops is shown below.

In this, the Small_Int is the color set used to set the initial and

final value for the loop. The “i+1” inscription on the arc

creating Loop from the transition to IN/OUT place is for the

increment of value. The final value is set to 5. If the value is

greater than the final value of Loop CPN model will throw an

error.

VI. CONCLUSION

This work presents the CPN modeling of possible faults that

may occur in an OOS. Fault information at an early stage

may help in testing and maintenance phase of software

development. Mainly inheritance and polymorphism related

faults are covered. modeling or done with a small Java

program example. This can be extended to create a neural

nets so that those nets can learn the OOS concepts and start

detecting faults. In future work, more faults may be covered

also try to model a real object-oriented software like

Management System.

REFERENCES

[1] S. Malve, P. Sharma Investigation of Manual and Automation

Testing using Assorted Approaches, International Journal of

Scientific Research in Computer Science and Engineering,Vol. 5,

Issue. 2, pp.81-87, 2017.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 1845

[2] S. Jat, P. Sharma Analysis of Different Software Testing Techniques,

International Journal of Scientific Research in Computer Science

and Engineering,Vol. 5, Issue. 2, pp.77-80, 2017.

[3] A. Marcus, D. Poshyvanyk, R. Ferenc. Using the Conceptual

Cohesion of Classes for Fault Prediction in Object-Oriented

Systems. IEEE Transactions on Software Engineering, Vol: 34 ,

Issue. 2, pp. 287-300, 2008.

[4] G. Antoniol, R. Fiutem, & L. Cristoforetti, Using Metrics to Identify

Design Patterns in Object-Oriented Software. IEEE METRICS, 1998

[5] V.R. Basili, L.C. Briand, & W.L. Melo, A Validation of Object-

Oriented Design Metrics as Quality Indicators. IEEE Trans.

Software Eng., Vol. 22, Issue. 10, pp. 751-761, 1996.

[6] E. Arisholm, L.C. Briand, & A.Føyen, Dynamic coupling

measurement for object-oriented software. IEEE Transactions on

Software Engineering, Vol. 30, Issue. 8, pp. 491-506, 2004.

[7] L.C. Briand, J. Wüst, & H. Lounis. Using Coupling Measurement

for Impact Analysis in Object-Oriented Systems. ICSM, 1999.

[8] C. Lakos,. Object Oriented modelling with Object Petri

Nets. Concurrent Object-Oriented Programming and Petri Nets,

Springer,Vol. 2001, pp. 1-37, 2001

[9] L.C. Wang, Object-oriented Petri nets for modelling and analysis of

automated manufacturing systems, ISSN. Vol. 9, Issue. 2, pp. 111-

125, 1996

[10]T. Murata,. Petri Nets : Properties , Analysis and Appl ka t ions.,

IEEE, vol. 77, Issue. 4pp. 541-580 2004

[11]K. Jensen, & L.M. Kristensen,. Colored Petri nets: a graphical

language for formal modelling and validation of concurrent

systems. Commun. ACM, Vol. 58, Issue. 6, pp. 61-70, 2015.

[12]J.R. Silva, & P.M. Foyo, Timed Petri Nets. ABCM Vol.3, pp. 471-

478, 2012

[13]F. Bause, & P.S. Kritzinger,. Stochastic Petri nets - an introduction

to the theory (2. ed.). Advanced studies of computer science. 1996

[14]D. Wodtke, & G. Weikum,. A Formal Foundation for Distributed

Workflow Execution Based on State Charts. ICDT, Vol. 1186,

pp.230-246, 1996

[15]R. Alur, & M. Yannakakis,. Model Checking of Hierarchical State

Machines. ACM Trans. Program. Lang. Syst., Vol. 23, Issue. 3, pp.

273-303, 2001

[16]A.S. Dange, A. Marcus, & D. Poshyvanykquot,. Survey of Fault

Prediction Methods in Object Oriented Systems, IEEE, Vol. 38,

Issue. 99, pp. 1-1, 2011

[17]A.J. Offutt, R.T. Alexander, Y. Wu, Q. Xiao, & C. Hutchinson,. A

Fault Model for Subtype Inheritance and Polymorphism. ISSRE, pp.

27-30, 2001

[18]L.E. Buzato, C.M. Rubira, & M.L. Lisbôa,. A Reflective Object-

Oriented Architecture for Developing Fault-Tolerant Software. J.

Braz. Comp. Soc., Vol. 4, 1997

[19]K.K. Aggarwal, Y. Singh, A. Kaur, & R Malhotra,.. Investigating

effect of Design Metrics on Fault Proneness in Object-Oriented

Systems. Journal of Object Technology, Vol. 6, pp. 127-141. 2007

[20]S. Jain, H. Gulati, V. Bajpai, S. Goel, D. Singh, S. Baranwal,

"Classes and Objects in Java," A Computer Science portal for

geeks.. [webpage]. https://www.geeksforgeeks.org/classes-objects-

java/. [April 20, 2018].

[21]M. Sheridan, "Java Fundamentals," Java - Oracle, Mike Sheridan at

Sun Microsystems in 1991. [pdf].

http://www.oracle.com/events/global/en/java-

outreach/resources/java-a-beginners-guide-1720064.pdf. [April 15,

2018].

[22]S. Jaiswal, "Inheritance in Java," Free Online Tutorials, Javatpoint

provides tutorials and interview questions of all technology.

[webpage]. https://www.javatpoint.com/inheritance-in-java. [April

16, 2018].

[23]BeginnersBook.com, "Multilevel inheritance in java with an

example," BeginnersBook is a tutorials site for beginners that covers

topics like Java, Collections, AWT, JSP, Servlet, JSTL, C, C++,

DBMS, Perl, WordPress, SEO.. [webpage].

https://beginnersbook.com/2013/12/multilevel-inheritance-in-java-

with-example/. [April 16, 2018].

[24]S. Jaiswal, "Polymorphism in Java," Free Online Tutorials,

Javatpoint provides tutorials and interview questions of all

technology. [webpage]. https://www.javatpoint.com/runtime-

Polymorphism-in-java. [April 24, 2018].

[25]Wikipedia, “Trap (computing)” para. 1, 15, March 2018 [Online].

Available: https://en.wikipedia.org/wiki/Trap_(computing).

[Accessed 4, April 2018].

[26]C. Inacio, "Software Fault Tolerance," Engineering Research

Accelerator, Carnegie Mellon University Dependable Embedded

Systems, Spring 1998. [webpage].

Available:

https://users.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/.

[04,April 2018].

[27]BeginnersBook.com, "Polymorphism in java with an example,"

BeginnersBook is a tutorials site for beginners that covers topics like

Java, Collections, AWT, JSP, Servlet, JSTL, C, C++, DBMS, Perl,

WordPress, SEO.. [webpage].

https://beginnersbook.com/2013/03/Polymorphism-in-java/.[April

27, 2018].

[28]D. Calvanese, "Conditional Statements," Diego Calvanese.Unibz

online study lectures [pdf].

https://www.inf.unibz.it/~calvanese/teaching/04-05-ip/lecture-

notes/uni05.pdf. [May 8, 2018].

[29]S. Jain, H. Gulati, V. Bajpai, S. Goel, D. Singh, S. Baranwal,

"Loops in Java," A Computer Science portal for geeks.. [webpage].

https://www.geeksforgeeks.org/loops-in-java/. [April 20, 2018].

Authors Profile

Mr. S Kaushik completed Bachelor of Computer Science and

Engineering from University Institute of

Engineering & Technology, MDU Rohtak in

2018 and currently working as Software

Developer in Wipro since 2018. His main

research work focuses on Software

Engineering. He has 10 months of job

experience and 6 months of Research Experience.

Dr. Ratneshwer is working as an Assistant

Professor at School of Computer and

Systems Sciences, Jawaharlal Nehru

University New Delhi. He has 12 years of

teaching and research experience. His area of

working is computer networks and software

engineering. He has 28 research papers in various

international journals.

